Effect of leading edge shapes on 81°/45° double-delta wing at low speeds

Author(s):  
B Ashwin Kumar ◽  
P Kumar ◽  
S Das ◽  
JK Prasad

Investigations were performed on an 81°/45° sweep double-delta wing at a freestream velocity of 20 m/s. Experiments consisted of the measurement of forces, static pressures, and surface flow visualizations. Effect of the leading edge shapes of the double-delta wing was studied. Results indicated a strong influence of the leading edge shape on the aerodynamic performance of the body. The increase in the bluntness of the leading edge augments the suction pressure and delays the vortex lift phenomena at higher angles of attack, which in turn enhances the lift over the wing. A reasonable agreement between the experiments and computations were observed.

Author(s):  
D. Bouchard ◽  
A. Asghar ◽  
J. Hardes ◽  
R. Edwards ◽  
W. D. E. Allan ◽  
...  

This paper addresses the issue of aerodynamic performance of a novel 3D leading edge modification to a reference vane. An analysis of tubercles found in nature and some engineering applications was used to synthesize new leading edge geometry. Three variations of the reference low pressure turbine vane were obtained by changing the characteristic parameters of the tubercles. Shock structure, surface flow visualization and total pressure measurements were made through experiments in a cascade rig, as well as through computational fluid dynamics. The tests were carried out at design zero incidence and off-design ±10-deg and ±5-deg incidences. The performance of the new 3D leading edge geometries was compared against the reference vane. Some leading edge tubercle configurations were effective at decreasing total pressure losses at positive inlet incidence angles. Numerical results supplemented experimental results.


Author(s):  
Renac Florent ◽  
Molton Pascal ◽  
Barberis Didier

The purpose of this study is to construct and test an experimental device to control vortex on a delta wing. The model has a root chord of c = 690mm and a sweep angle of Λ = 60°. The control system is based on four rectangular slits 50 mm long and 0.2 mm wide running along the leading edge. This configuration produces jets normal to the leading edge. The mass flow rates and frequencies of injection can be varied independently. The results are shown in the form of surface flow visualizations, with the skin friction pattern exhibited by oil flow visualization, and the laminar-to-turbulent transition by acenaphthene. Mean and instantaneous surface pressure distributions were determined with Kulite™ sensors and the velocity field was determined by 3D laser Doppler velocimetry (LDV) measurements. Control device efficiencies were evaluated by laser sheet visualization.


1999 ◽  
Vol 103 (1025) ◽  
pp. 339-347 ◽  
Author(s):  
L. W. Traub ◽  
B. Moeller ◽  
S. F. Galls

Abstract An experimental investigation was undertaken to determine the effectiveness of distributed surface porosity for the alleviation of pitch-up on a delta wing. Tests were undertaken using a 65° sweep delta wing with distributed porosity evaluated at various locations on the wing. Force balance, on and off surface flow visualisation and flow field surveys using a multi-hole probe were undertaken. The data shows that distributed porosity applied along the wing leading edge at the apex is effective in eliminating pitch-up whilst incurring a minimal performance cost. Trailing edge porosity generally degraded performance.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 2939-2943

Numerical and experimental investigations of flay over double delta wing at supersonic speed are investigated . For numerical simulations , the body geometry is generated using SolidWorks software , mesh is created using Gambit and solution is obtained using Fluent sofivvare . For the experimental studies , stainless steel model is fabricated and tested in the supersonic Mind tunnel at Mach 2.5 at 0 and 5 angle of attack . The results are presented in the present paper


1992 ◽  
Vol 114 (4) ◽  
pp. 559-565 ◽  
Author(s):  
F. J. Pierce ◽  
J. Shin

The growth and development of a horseshoe vortex system in an incompressible, three-dimensional turbulent junction flow were investigated experimentally. A streamlined cylinder mounted with its axis normal to a flat surface was used to generate the junction vortex flow. The flow environment was characterized by a body Reynolds number of 183,000, based on the leading edge diameter of the streamlined cylinder. The study included surface flow visualizations, surface pressure measurements, and mean flow measurements of total pressure, static pressure, and velocity distributions in three planes around the base of the streamlined cylinder, and in two planes in the wake flow. Some characterizations of vortex properties based on the measured mean cross-flow velocity components are presented. The results show the presence of a single large, dominant vortex, with strong evidence of a very small corner vortex in the junction between the cylinder and the flat surface. The center of the dominant vortex drifts away from both the body and the flat surface as the flow develops along and downstream of the body. The growth and development of the core of the large, dominant vortex are documented.


Sign in / Sign up

Export Citation Format

Share Document