Prediction of human gait activities using wearable sensors

Author(s):  
Ahmed Halim ◽  
A. Abdellatif ◽  
Mohammed I Awad ◽  
Mostafa RA Atia

This paper aims to enhance the accuracy of human gait prediction using machine learning algorithms. Three classifiers are used in this paper: XGBoost, Random Forest, and SVM. A predefined dataset is used for feature extraction and classification. Gait prediction is determined during several locomotion activities: sitting (S), level walking (LW), ramp ascend (RA), ramp descend (RD), stair ascend (SA), stair descend (SD), and standing (ST). The results are gained for steady-state (SS) and overall (full) gait cycle. Two sets of sensors are used. The first set uses inertial measurement units only. The second set uses inertial measurement units, electromyography, and electro-goniometers. The comparison is based on prediction accuracy and prediction time. In addition, a comparison between the prediction times of XGBoost with CPU and GPU is introduced due to the easiness of using XGBoost with GPU. The results of this paper can help to choose a classifier for gait prediction that can obtain acceptable accuracy with fewer types of sensors.

Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5283 ◽  
Author(s):  
Gianmarco Baldini ◽  
Filip Geib ◽  
Raimondo Giuliani

The concept of Continuous Authentication is to authenticate an entity on the basis of a digital output generated in a continuous way by the entity itself. This concept has recently been applied in the literature for the continuous authentication of persons on the basis of intrinsic features extracted from the analysis of the digital output generated by wearable sensors worn by the subjects during their daily routine. This paper investigates the application of this concept to the continuous authentication of automotive vehicles, which is a novel concept in the literature and which could be used where conventional solutions based on cryptographic means could not be used. In this case, the Continuous Authentication concept is implemented using the digital output from Inertial Measurement Units (IMUs) mounted on the vehicle, while it is driving on a specific road path. Different analytical approaches based on the extraction of statistical features from the time domain representation or the use of frequency domain coefficients are compared and the results are presented for various conditions and road segments. The results show that it is possible to authenticate vehicles from the Inertial Measurement Unit (IMU) recordings with great accuracy for different road segments.


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1885 ◽  
Author(s):  
Isabelle Poitras ◽  
Mathieu Bielmann ◽  
Alexandre Campeau-Lecours ◽  
Catherine Mercier ◽  
Laurent J. Bouyer ◽  
...  

Background: Workplace adaptation is the preferred method of intervention to diminish risk factors associated with the development of work-related shoulder disorders. However, the majority of the workplace assessments performed are subjective (e.g., questionnaires). Quantitative assessments are required to support workplace adaptations. The aims of this study are to assess the concurrent validity of inertial measurement units (IMUs; MVN, Xsens) in comparison to a motion capture system (Vicon) during lifting tasks, and establish the discriminative validity of a wireless electromyography (EMG) system for the evaluation of muscle activity. Methods: Sixteen participants performed 12 simple tasks (shoulder flexion, abduction, scaption) and 16 complex lifting tasks (lifting crates of different weights at different heights). A Delsys Trigno EMG system was used to record anterior and middle deltoids’ EMG activity, while the Xsens and Vicon simultaneously recorded shoulder kinematics. Results: For IMUs, correlation coefficients were high (simple task: >0.968; complex task: >0.84) and RMSEs were low (simple task: <6.72°; complex task: <11.5°). For EMG, a significant effect of weight, height and a weight x height interaction (anterior: p < 0.001; middle: p < 0.03) were observed for RMS EMG activity. Conclusions: These results suggest that wireless EMG and IMUs are valid units that can be used to measure physical demand in workplace assessments.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2501 ◽  
Author(s):  
Mohammad Mokhlespour Esfahani ◽  
Maury Nussbaum

Wearable sensors and systems have become increasingly popular in recent years. Two prominent wearable technologies for human activity monitoring are smart textile systems (STSs) and inertial measurement units (IMUs). Despite ongoing advances in both, the usability aspects of these devices require further investigation, especially to facilitate future use. In this study, 18 participants evaluate the preferred placement and usability of two STSs, along with a comparison to a commercial IMU system. These evaluations are completed after participants engaged in a range of activities (e.g., sitting, standing, walking, and running), during which they wear two representatives of smart textile systems: (1) a custom smart undershirt (SUS) and commercial smart socks; and (2) a commercial whole-body IMU system. We first analyze responses regarding the usability of the STS, and subsequently compared these results to those for the IMU system. Participants identify a short-sleeved shirt as their preferred activity monitor. In additional, the SUS in combination with the smart socks is rated superior to the IMU system in several aspects of usability. As reported herein, STSs show promise for future applications in human activity monitoring in terms of usability.


Author(s):  
Pratima Saravanan ◽  
Jiyun Yao ◽  
Jessica Menold

Clinical gait analysis is used for diagnosing, assessing, and for monitoring a patient by analyzing their kinetics, kinematics and electromyography while walking. Traditionally, gait analysis is performed in a formal laboratory environment making use of several high-resolution cameras, either video or infrared. The subject is asked to walk on a force platform or a treadmill with several markers attached to their body, allowing cameras to capture the joint coordinates across time. The space required for such a laboratory is non-trivial and often the associated costs of such an experimental setup is prohibitively expensive. The current work aims to investigate the coupled use of a Microsoft Kinect and Inertial Measurement Units as a portable and cost-efficient gait analysis system. Past studies on assessing gait using either Kinect or Inertial Measurement Units concluded that they achieve medium reliability individually due to some drawbacks related to each sensor. In this study, we propose that a combined system is efficient in detecting different phases of human gait, and the combination of sensors complement each other by overcoming the individual sensor drawbacks. Preliminary findings indicate that the IMU sensors are efficient in providing gait kinematics such as step length, stride length, velocity, cadence, etc., whereas the Kinect sensor helps in studying the gait asymmetries by comparing the right and left joint, such as hips, knees, and ankle.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5773
Author(s):  
Carla Pérez-Chirinos Buxadé ◽  
Bruno Fernández-Valdés ◽  
Mónica Morral-Yepes ◽  
Sílvia Tuyà Viñas ◽  
Josep Maria Padullés Riu ◽  
...  

Inertial measurement units (IMUs) represent a technology that is booming in sports right now. The aim of this study was to evaluate the validity of a new application on the use of these wearable sensors, specifically to evaluate a magnet-based timing system (M-BTS) for timing short-duration sports actions using the magnetometer built into an IMU in different sporting contexts. Forty-eight athletes (22.7 ± 3.3 years, 72.2 ± 10.3 kg, 176.9 ± 8.5 cm) and eight skiers (17.4 ± 0.8 years, 176.4 ± 4.9 cm, 67.7 ± 2.0 kg) performed a 60-m linear sprint running test and a ski slalom, respectively. The M-BTS consisted of placing several magnets along the course in both contexts. The magnetometer built into the IMU detected the peak-shaped magnetic field when passing near the magnets at a certain speed. The time between peaks was calculated. The system was validated with photocells. The 95% error intervals for the total times were less than 0.077 s for the running test and 0.050 s for the ski slalom. With the M-BTS, future studies could select and cut the signals belonging to the other sensors that are integrated in the IMU, such as the accelerometer and the gyroscope.


Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 124
Author(s):  
Yuchen Shi ◽  
Atsushi Ozaki ◽  
Masaaki Honda

The purpose of this study was to demonstrate the feasibility of measuring and analyzing characteristics of figure skating jumps using wearable sensors. One elite figure skater, outfitted with five inertial measurement units (IMUs), performed flip jumps with single, double, and triple revolutions. Take-off event and flight phase of each trial were under analysis. Kinematic differences among jumps with variant revolutions as well as key factors for performing successfully landed triple jumps were determined by IMU signals. Compared with a video-based method, this study revealed the following characteristics that coincide with previous studies: at take-off event, the skater performed pre-rotation and took off with preferred postural positions as revolutions increased (p < 0.01); during flight, the skater struggled more to maintain the smallest inertial of moment as revolutions increased (p < 0.01); in order to perform successfully landed jumps, it was crucial that the skater improved the control of preparation for flight at take-off (p < 0.05).


Proceedings ◽  
2018 ◽  
Vol 2 (19) ◽  
pp. 1237 ◽  
Author(s):  
Lourdes Martínez-Villaseñor ◽  
Hiram Ponce ◽  
Ricardo Abel Espinosa-Loera

Fall detection can improve the security and safety of older people and alert when fall occurs. Fall detection systems are mainly based on wearable sensors, ambient sensors, and vision. Each method has commonly known advantages and limitations. Multimodal and data fusion approaches present a combination of data sources in order to better describe falls. Publicly available multimodal datasets are needed to allow comparison between systems, algorithms and modal combinations. To address this issue, we present a publicly available dataset for fall detection considering Inertial Measurement Units (IMUs), ambient infrared presence/absence sensors, and an electroencephalogram Helmet. It will allow human activity recognition researchers to do experiments considering different combination of sensors.


2021 ◽  
Author(s):  
Siavash Khaksar ◽  
Huizhu Pan ◽  
Iain Murray ◽  
Wanquan Liu ◽  
Himanshu Agrawal ◽  
...  

BACKGROUND Cerebral palsy (CP) is a physical disability that affects movement and posture. About 17 million people worldwide and 34000 people in Australia are living with CP. In clinical and kinematic research, goniometers and inclinometers are the most commonly used clinical tools to measure joint angles and position in children with CP. OBJECTIVE This paper presents collaborative research between department of Electrical Engineering and Computing at Curtin University and the investigator team of a multi-centre randomised controlled trial involving children with CP. The main objective of this paper was to develop a digital solution for mass data collection and application of machine learning to classify the movement features associated with CP without the need to measure Euler, Quaternion, and joint measurement calculation and help determine the effectiveness of therapy. METHODS Custom, low-cost Inertial Measurement Units (IMUs) were developed to record the usual wrist movements of participants aged 5 to 15 years old with CP. The IMU data were used to calculate the joint angle of the wrist movement to determine the range of motion. Nine different machine learning algorithms were used to classify the movement features associated with CP. RESULTS Upon completion of the project, the wrist joint angle was successfully calculated, and CP movement was classified as a feature using machine learning on raw IMU data, with Random Forrest algorithm showing the highest accuracy at 85.75%. CONCLUSIONS Anecdotal feedback from MIT researchers were positive about the potential for IMUs to contribute accurate data about active ROM, especially in children for whom goniometric methods are challenging. There may also be potential to use IMUs for continued monitoring of hand movement throughout the day. CLINICALTRIAL The trial is registered with the ANZ Clinical Trials Registry (ACTRN12614001276640).


Sign in / Sign up

Export Citation Format

Share Document