scholarly journals Biomechanical comparison of a C1 posterior arch clamp with C1 lateral mass screws in constructs for C1-C2 fusion

Author(s):  
Timothy L Lasswell ◽  
John B Medley ◽  
Jack P Callaghan ◽  
Duane S Cronin ◽  
Colin D McKinnon ◽  
...  

The aim of this experimental study was to assess the biomechanical performance of a novel C1 posterior arch (C1PA) clamp compared with C1 lateral mass (C1LM) screws in constructs used to treat atlantoaxial instability. These constructs had either C2 pedicle (C2P) screws or C2 translaminar (C2TL) screws. Eight fresh-frozen human cadaveric ligamentous spine specimens (C0-C3) were tested under six conditions: the intact state, the destabilized state after a simulated odontoid fracture, and when instrumented with four constructs (C1LM-C2P, C1LM-C2TL, C1PA-C2P, C1PA-C2TL). Each specimen was tested in a spinal loading simulator that separately applied axial rotation, flexion-extension and lateral bending. In each test condition, displacement controlled angular motion was applied in both directions at a speed of 2 deg/s until a resulting moment of 1.5 Nm was achieved. The measured ranges of motion (ROM) of the C1-C2 segments were compared for each test condition using nonparametric Friedman tests. The destabilized state had significantly more C1-C2 motion ( p < 0.05) than the intact state in all cases, and all constructs greatly reduced this motion. C2 pedicle screw constructs that used the C1PA clamp had significantly less C1-C2 motion ( p < 0.05) than those with C1LM screws in flexion-extension as well as axial rotation and no statistically significant difference was detected in lateral bending. C2 translaminar screw constructs that used the C1PA clamp had significantly less C1-C2 motion ( p < 0.05) than those with C1LM screws in flexion-extension and no statistically significant difference was detected in axial rotation or in lateral bending. Data from the current study suggested that constructs using the novel C1PA clamp would provide as good, or improved, biomechanical stability to the C1-C2 segment compared with constructs using C1LM screws.

2016 ◽  
Vol 24 (2) ◽  
pp. 315-320 ◽  
Author(s):  
Jin Guo-Xin ◽  
Wang Huan

OBJECT Atlantoaxial instability often requires surgery, and the current methods for fixation pose some risk to vascular and neurological tissues. Thus, new effective and safer methods are needed for salvage operations. This study sought to assess unilateral C-1 posterior arch screws (PASs) and C-2 laminar screws (LSs) combined with 1-side C1–2 pedicle screws (PSs) for posterior C1–2 fixation using biomechanical testing with bilateral C1–2 PSs in a cadaveric model. METHODS Six fresh ligamentous human cervical spines were evaluated for their biomechanics. The cadaveric specimens were tested in their intact condition, stabilization after injury, and after injury at 1.5 Nm of pure moment in 6 directions. The 3 groups tested were bilateral C1–2 PSs (Group A); left side C1–2 PSs with an ipsilateral C-1 PAS + C-2 laminar screw (Group B); and left side C1–2 PSs with a contralateral C-1 PAS + C-2 LS (Group C). During the testing, angular motion was measured using a motion capture platform. Data were recorded, and statistical analyses were performed. RESULTS Biomechanical testing showed that there was no significant difference among the stabilities of these fixation systems in flexion-extension and rotation control. In left lateral bending, the bilateral C1–2 PS group decreased flexibility by 71.9% compared with the intact condition, the unilateral C1–2 PS and ipsilateral PAS+LS group decreased flexibility by 77.6%, and the unilateral C1–2 PS and contralateral PAS+LS group by 70.0%. Each method significantly decreased C1–2 movements in right lateral bending compared with the intact condition, and the bilateral C1–2 PS system was more stable than the C1–2 PS and contralateral PAS+LS system (p = 0.036). CONCLUSIONS A unilateral C-1 PAS + C-2 LS combined with 1-side C-1 PSs provided the same acute stability as the PS, and no statistically significant difference in acute stability was found between the 2 screw techniques. These methods may constitute an alternative method for posterior atlantoaxial fixation.


2019 ◽  
Vol 30 (3) ◽  
pp. 314-322 ◽  
Author(s):  
Gilbert Cadena ◽  
Huy T. Duong ◽  
Jonathan J. Liu ◽  
Kee D. Kim

OBJECTIVEC1–2 is a highly mobile complex that presents unique surgical challenges to achieving biomechanical rigidity and fusion. Posterior wiring methods have been largely replaced with segmental constructs using the C1 lateral mass, C1 pedicle, C2 pars, and C2 pedicle. Modifications to reduce surgical morbidity led to the development of C2 laminar screws. The C1 posterior arch has been utilized mostly as a salvage technique, but recent data indicate that this method provides significant rigidity in flexion-extension and axial rotation. The authors performed biomechanical testing of a C1 posterior arch screw (PAS)/C2 pars screw construct, collected morphometric data from a population of 150 CT scans, and performed a feasibility study of a freehand C1 PAS technique in 45 cadaveric specimens.METHODSCervical spine CT scans from 150 patients were analyzed to determine the average C1 posterior tubercle thickness and size of C1 posterior arches. Eight cadavers were used to compare biomechanical stability of intact specimens, C1 lateral mass/C2 pars screw, and C1 PAS/C2 pars screw constructs. Paired comparisons were made using repeated-measures ANOVA and Holm-Sidak tests. Forty-five cadaveric specimens were used to demonstrate the feasibility and safety of the C1 PAS freehand technique.RESULTSMorphometric data showed the average craniocaudal thickness of the C1 posterior tubercle was 12.3 ± 1.94 mm. Eight percent (12/150) of cases showed thin posterior tubercles or midline defects. Average posterior arch thickness was 6.1 ± 1.1 mm and right and left average posterior arch length was 28.7 mm ± 2.53 mm and 28.9 ± 2.29 mm, respectively. Biomechanical testing demonstrated C1 lateral mass/C2 pars and C1 PAS/C2 pars constructs significantly reduced motion in flexion-extension and axial rotation compared with intact specimens (p < 0.05). The C1 lateral mass/C2 pars screw construct provided significant rigidity in lateral bending (p < 0.05). There was no statistically significant difference between the two constructs in flexion-extension, lateral bending, or axial rotation. Of the C1 posterior arches, 91.3% were successfully cannulated using a freehand technique with a low incidence of cortical breach (4.4%).CONCLUSIONSThis biomechanical analysis indicates equivalent stability of the C1 PAS/C2 pars screw construct compared with a traditional C1 lateral mass/C2 pars screw construct. Both provide significant rigidity in flexion-extension and axial rotation. Feasibility testing in 45 cadaveric specimens indicates a high degree of accuracy with low incidence of cortical breach. These findings are supported by a separate radiographic morphometric analysis.


2008 ◽  
Vol 9 (3) ◽  
pp. 296-300 ◽  
Author(s):  
Michael A. Finn ◽  
Daniel R. Fassett ◽  
Todd D. Mccall ◽  
Randy Clark ◽  
Andrew T. Dailey ◽  
...  

Object Stabilization with rigid screw/rod fixation is the treatment of choice for craniocervical disorders requiring operative stabilization. The authors compare the relative immediate stiffness for occipital plate fixation in concordance with transarticular screw fixation (TASF), C-1 lateral mass and C-2 pars screw (C1L-C2P), and C-1 lateral mass and C-2 laminar screw (C1L-C2L) constructs, with and without a cross-link. Methods Ten intact human cadaveric spines (Oc–C4) were prepared and mounted in a 7-axis spine simulator. Each specimen was precycled and then tested in the intact state for flexion/extension, lateral bending, and axial rotation. Motion was tracked using the OptoTRAK 3D tracking system. The specimens were then destabilized and instrumented with an occipital plate and TASF. The spine was tested with and without the addition of a cross-link. The C1L-C2P and C1L-C2L constructs were similarly tested. Results All constructs demonstrated a significant increase in stiffness after instrumentation. The C1L-C2P construct was equivalent to the TASF in all moments. The C1L-C2L was significantly weaker than the C1L-C2P construct in all moments and significantly weaker than the TASF in lateral bending. The addition of a cross-link made no difference in the stiffness of any construct. Conclusions All constructs provide significant immediate stability in the destabilized occipitocervical junction. Although the C1L-C2P construct performed best overall, the TASF was similar, and either one can be recommended. Decreased stiffness of the C1L-C2L construct might affect the success of clinical fusion. This construct should be reserved for cases in which anatomy precludes the use of the other two.


2017 ◽  
Vol 7 (3) ◽  
pp. 239-245 ◽  
Author(s):  
Nitin Bhatia ◽  
Asheen Rama ◽  
Brandon Sievers ◽  
Ryan Quigley ◽  
Michelle H. McGarry ◽  
...  

Study Design: Biomechanical, cadaveric study. Objectives: To compare the relative stiffness of unilateral C1 lateral mass-C2 intralaminar fixation to intact specimens and bilateral C1 lateral mass-C2 intralaminar constructs. Methods: The biomechanical integrity of a unilateral C1 lateral mass-C2 intralaminar screw construct was compared to intact specimens and bilateral C1 lateral mass-C2 intralaminar screw constructs. Five human cadaveric specimens were used. Range of motion and stiffness were tested to determine the stiffness of the constructs. Results: Unilateral fixation significantly decreased flexion/extension range of motion compared to intact ( P < .001) but did not significantly affect axial rotation ( P = .3) or bending range of motion ( P = .3). There was a significant decrease in stiffness in extension for both unilateral and bilateral fixation techniques compared to intact ( P = .04 and P = .03, respectively). There was also a significant decrease in stiffness for ipsilateral rotation for the unilateral construct compared to intact ( P = .007) whereas the bilateral construct significantly increased ipsilateral rotation stiffness compared to both intact and unilateral fixation ( P < .001). Conclusion: Bilateral constructs did show improved biomechanical properties compared to the unilateral constructs. However, unilateral C1-C2 fixation using a C1 lateral mass and C2 intralaminar screw-rod construct decreased range of motion and improved stiffness compared to the intact state with the exception of extension and ipsilateral rotation. Hence, a unilateral construct may be acceptable in clinical situations in which bilateral fixation is not possible, but an external orthosis may be necessary to achieve a fusion.


2020 ◽  
Vol 10 (20) ◽  
pp. 7291
Author(s):  
Soo-Bin Lee ◽  
Hwan-Mo Lee ◽  
Tae-Hyun Park ◽  
Sung Lee ◽  
Young-Woo Kwon ◽  
...  

Background: There are a few biomechanical studies that describe posterior fixation methods with pedicle screws (PS) and lateral mass screws (LMS); the combination of both screw types and their effect on an allograft spacer in a surgically treated cervical segment is unknown. Methods: Finite element model (FEM) analyses were used to investigate the effects of a hybrid technique using posterior PS and LMS. Stress distribution and subsidence risk from a combination of screws under hybrid motion control conditions, including flexion, extension, axial rotation, and lateral bending, were investigated to evaluate the biomechanical characteristics of different six-screw combinations. Findings: The load sharing on the allograft spacer in flexion mode was highest in the LMS model (74.6%) and lowest in the PS model (35.1%). The likelihood of subsidence of allograft spacer on C6 was highest in the screws from the distal LMS (type 5) model during flexion and extension (4.902 MPa, 30.1% and 2.189 MPa, 13.4%). In lateral bending, the left unilateral LMS (type 4) model screws on C5 (3.726 MPa, 22.9%) and C6 (2.994 MPa, 18.4%) yielded the greatest subsidence risks, because the lateral bending forces were supported by the LMS. In counterclockwise axial rotation, the left unilateral LMS (type 4) model screws on C5 (3.092 MPa, 19.0%) and C6 (3.076 MPa, 18.9%) demonstrated the highest subsidence risks. Conclusion: The asymmetrical ipsilateral use of LMS and posterior PS in lateral bending and axial rotation demonstrated the lowest stability and greatest subsidence risk. We recommend bilateral symmetrical insertion of LMS or posterior PS and posterior PS on distal vertebrae for increased stability and reduced risk of allograft spacer subsidence.


2021 ◽  
Vol 11 (13) ◽  
pp. 5764
Author(s):  
Jen-Chung Liao ◽  
Michael Jian-Wen Chen ◽  
Tung-Yi Lin ◽  
Weng-Pin Chen

Vertebroplasty (VP), balloon kyphoplasty (BKP), and vertebral stent (VS) are usually used for treating osteoporotic compression fractures. However, these procedures may pose risks of secondary adjacent level fractures. This study simulates finite element models of osteoporotic compression fractures treated with VP, BKP, and VS Vertebral resection method was used to simulate vertebra fracture with Young’s modulus set at 70 MPa to replicate osteoporosis. A follower load of (1175 N for flexion, and 500 N for all others) was applied in between vertebral bodies to simulate the muscle force. Moment loadings of 7.5 N-m in flexion, extension, lateral bending, axial rotation were applied respectively. The VS model had the highest von Mises stresses on the bone cement under all different loading conditions (flexion/5.91 MPa; extension/3.74 MPa; lateral bending/3.12 MPa; axial rotation/3.54 MPa). The stress distribution and maximum von Mises stresses of the adjacent segments, T11 inferior endplate and L1 superior endplate, showed no significant difference among three surgical models. The postoperative T12 stiffness for VP, BKP, and VS are 2898.48 N/mm, 4123.18 N/mm, and 4690.34 N/mm, respectively. The VS model led to superior surgical vertebra stiffness without significantly increasing the risks of adjacent fracture.


2005 ◽  
Vol 2 (3) ◽  
pp. 339-343 ◽  
Author(s):  
Patrick W. Hitchon ◽  
Kurt Eichholz ◽  
Christopher Barry ◽  
Paige Rubenbauer ◽  
Aditya Ingalhalikar ◽  
...  

Object. The authors compared the biomechanical performance of the human cadaveric spine implanted with a metallic ball-and-cup artificial disc at L4–5 with the spine's intact state and after anterior discectomy. Methods. Seven human L2—S1 cadaveric spines were mounted on a biomechanical testing frame. Pure moments of 0, 1.5, 3.0, 4.5, and 6.0 Nm were applied to the spine at L-2 in six degrees of motion (flexion, extension, right and left lateral bending, and right and left axial rotation). The spines were tested in the intact state as well as after anterior L4–5 discectomy. The Maverick disc was implanted in the discectomy defect, and load testing was repeated. The artificial disc created greater rigidity for the spine than was present after discectomy, and the spine performed biomechanically in a manner comparable with the intact state. Conclusions. The results indicate that in an in vitro setting, this model of artificial disc stabilizes the spine after discectomy, restoring motion comparable with that of the intact state.


2011 ◽  
Vol 69 (suppl_1) ◽  
pp. ons1-ons7 ◽  
Author(s):  
Jae Taek Hong ◽  
Tomoyuki Takigawa ◽  
Ranjith Udayakunmar ◽  
Hun Kyu Shin ◽  
Peter Simon ◽  
...  

Abstract BACKGROUND: There have been no reports of biomechanical stability of C1-2 constructs after decortication of the C2 lamina. In addition, few studies have compared the stability of C2 laminar screw and pars screw constructs. OBJECTIVE: To compare the biomechanical stability of 3 different C1-2 construct conditions (C2 pars screw, C2 intralaminar screw, C2 intralaminar construct with C2 laminar decortication). METHODS: Fourteen fresh-frozen cadaveric cervical specimens (C1-3) were used. In 7 specimens, pure moments of 1.5 Nm were applied in flexion/extension, lateral bending, and axial rotation. Each specimen was tested in the normal state, in the destabilized state (after odontoidectomy and resection of transverse atlantal ligament), and after application of constructs. After kinematic study, these 7 specimens underwent axial pullout strength testing of pars screw and 50% decorticated C2 intralaminar screws. In another 7 specimens, insertion torque and pullout strength were measured to compare the pars screw and intact C2 intralaminar screw. RESULTS: There were no statistically significant differences between the intact C2 intralaminar and 50% decorticated C2 intralaminar screw constructs in terms of range-of-motion limitations. The C2 pars screw construct was significantly superior to the C2 laminar screw construct in lateral bending (P &lt; .01) and axial rotation (P &lt; .01) and equivalent to the C2 laminar screw construct in flexion/extension (P = .42). There was no significant pullout strength difference between the 3 kinds of C2 screw. CONCLUSION: The C1 lateral mass-C2 pars screws construct was stronger than the C1 lateral mass-C2 intralaminar screw construct. Decortication of C2 laminar (up to 50%) did not affect the immediate stability of the C1-2 construct.


2020 ◽  
Vol 33 (2) ◽  
pp. 138-147
Author(s):  
Bryan W. Cunningham ◽  
Kyle B. Mueller ◽  
Kenneth P. Mullinix ◽  
Xiaolei Sun ◽  
Faheem A. Sandhu

OBJECTIVEThe objective of the current study was to quantify and compare the multidirectional flexibility properties of occipital anchor fixation with conventional methods of occipitocervical screw fixation using nondestructive and destructive investigative methods.METHODSFourteen cadaveric occipitocervical specimens (Oc–T2) were randomized to reconstruction with occipital anchors or an occipital plate and screws. Using a 6-degree-of-freedom spine simulator with moments of ± 2.0 Nm, initial multidirectional flexibility analysis of the intact and reconstructed conditions was performed followed by fatigue loading of 25,000 cycles of flexion-extension (x-axis, ± 2.0 Nm), 15,000 cycles of lateral bending (z-axis, ± 2.0 Nm), and 10,000 cycles of axial rotation (y-axis, ± 2.0 Nm). Fluoroscopic images of the implantation sites were obtained before and after fatigue testing and placed on an x-y coordinate system to quantify positional stability of the anchors and screws used for reconstruction and effect, if any, of the fatigue component. Destructive testing included an anterior flexural load to construct failure. Quantification of implant, occipitocervical, and atlantoaxial junction range of motion is reported as absolute values, and peak flexural failure moment in Newton-meters (Nm).RESULTSAbsolute value comparisons between the intact condition and 2 reconstruction groups demonstrated significant reductions in segmental flexion-extension, lateral bending, and axial rotation motion at the Oc–C1 and C1–2 junctions (p < 0.05). The average bone mineral density at the midline keel (1.422 g/cm3) was significantly higher compared with the lateral occipital region at 0.671 g/cm3 (p < 0.05). There were no significant differences between the occipital anchor and plate treatments in terms of angular rotation (degrees; p = 0.150) or x-axis displacement (mm; p = 0.572), but there was a statistically significant difference in y-axis displacement (p = 0.031) based on quantitative analysis of the pre- and postfatigue fluoroscopic images (p > 0.05). Under destructive anterior flexural loading, the occipital anchor group failed at 90 ± 31 Nm, and the occipital plate group failed at 79 ± 25 Nm (p > 0.05).CONCLUSIONSBoth reconstructions reduced flexion-extension, lateral bending, and axial rotation at the occipitocervical and atlantoaxial junctions, as expected. Flexural load to failure did not differ significantly between the 2 treatment groups despite occipital anchors using a compression-fit mechanism to provide fixation in less dense bone. These data suggest that an occipital anchor technique serves as a biomechanically viable clinical alternative to occipital plate fixation.


2016 ◽  
Vol 24 (6) ◽  
pp. 910-915 ◽  
Author(s):  
Keitaro Matsukawa ◽  
Yoshiyuki Yato ◽  
Hideaki Imabayashi ◽  
Naobumi Hosogane ◽  
Takashi Asazuma ◽  
...  

OBJECTIVE In the management of isthmic spondylolisthesis, the pedicle screw system is widely accepted surgical strategy; however, there are few reports on the biomechanical behavior of pedicle screws in spondylolytic vertebrae. The purpose of the present study was to compare fixation strength between pedicle screws inserted through the traditional trajectory (TT) and those inserted through a cortical bone trajectory (CBT) in spondylolytic vertebrae by computational simulation. METHODS Finite element models of spondylolytic and normal vertebrae were created from CT scans of 17 patients with adult isthmic spondylolisthesis (mean age 54.6 years, 10 men and 7 women). Each vertebral model was implanted with pedicle screws using TT and CBT techniques and compared between two groups. First, fixation strength of a single screw was evaluated by measuring axial pullout strength. Next, vertebral fixation strength of a paired-screw construct was examined by applying forces simulating flexion, extension, lateral bending, and axial rotation to vertebrae. RESULTS Fixation strengths of TT screws showed a nonsignificant difference between the spondylolytic and the normal vertebrae (p = 0.31–0.81). Fixation strength of CBT screws in the spondylolytic vertebrae demonstrated a statistically significant decrease in pullout strength (21.4%, p < 0.01), flexion (44.1%, p < 0.01), extension (40.9%, p < 0.01), lateral bending (38.3%, p < 0.01), and axial rotation (28.1%, p < 0.05) compared with those in the normal vertebrae. In the spondylolytic vertebrae, no statistically significant difference was observed for pullout strength between TT and CBT (p = 0.90); however, the CBT construct showed lower vertebral fixation strength in flexion (39.0%, p < 0.01), extension (35.6%, p < 0.01), lateral bending (50.7%, p < 0.01), and axial rotation (59.3%, p < 0.01) compared with the TT construct. CONCLUSIONS CBT screws are less optimal for stabilizing the spondylolytic vertebra due to their lower fixation strength compared with TT screws.


Sign in / Sign up

Export Citation Format

Share Document