Design strategies and numerical simulation of highly loaded aspirated compressor blades

Author(s):  
Zhiyuan Cao ◽  
Bo Liu ◽  
Ting Zhang ◽  
Yibing Xu

Boundary layer suction can effectively eliminate flow separations and increase aerodynamic loading of axial compressors. The design methodology of highly loaded aspirated compressor blades was developed and illustrated in this study. In this work, Computational Fluid Dynamics (CFD) methods were first validated with existing data and then used to develop the design strategy of aspirated compressor blades. Design strategies for higher blade performances, including higher loading, larger stall margin and larger blade thickness near the suction slot of aspirated blades, were investigated through analyzing a series of highly loaded aspirated cascades with diffusion factors (DF) around 0.71. Results showed that the design methodology proposed in this paper was appropriate for designing highly loaded aspirated compressor blades. Under the condition of no boundary layer suction (BLS), severe flow separations of highly loaded blades were tailored at the aft part of suction surface by adopting the “ski-slope” velocity distribution, which almost remained unchanged within a large incidence range. The “ski-slope” velocity distribution was appropriate for removing flow separations and beneficial for obtaining thicker blade. High loading of aspirated blade was achieved by the postpositional suction peak and minimum velocity distribution on pressure surface. The stall margin of highly loaded aspirated cascades could be enlarged by designing the velocity distribution upstream of the suction slot and by selecting suction peak position and solidity. A three-dimensional (3D) highly loaded aspirated cascade was designed based on a two-dimensional (2D) cascade. Both the trailing edge separation and corner separation of the 3D highly loaded aspirated cascade were eliminated successfully with coupled suction surface and endwall suction.

Author(s):  
Fu Chen ◽  
Yanping Song ◽  
Huanlong Chen ◽  
Zhongqi Wang

The effects of boundary layer suction on the aerodynamic performance of compressor cascade are mainly determined by: (1) the location of the suction slot; (2) the suction flow rate; (3) the suction slot geometry; and (4) the aerodynamic parameters of the cascade (e.g. solidity and incidence). In this paper, an extensive numerical study has been carried out to investigate the effects of these influencing factors in a highly-loaded compressor cascade by comparing the aerodynamic performance of the cascade in order to give guidance for the application of boundary layer suction to improve the performance of modern highly-loaded compressors. The results show that boundary layer suction alleviates the accumulation of low-energy fluid at suction surface corners and enhances the ability of flow turning, and this improvement in flow behavior depends on the location of the suction slot and the suction flow rate. When the location of the suction slot and the suction flow rate are fixed, as the cascade solidity decreases from 1.819 to 1.364 and 1.091, the cascade total pressure loss is reduced at most by 25.1%, 27.7% and 32.9% respectively, and the cascade exit flow deviation is decreased by 3.1°, 4.2° and 5.0° accordingly. Moreover, boundary layer suction also has the largest effect in the cascade with smaller solidity at large positive incidences, which means that boundary layer suction is an effective way to widen the stable operating range of the highly-loaded compressor cascade. The suction slot geometry is described by the suction slot width and the suction slot angle with respect to the direction normal to the blade suction surface. The results show that the flow behavior is improved and the endwall loss is reduced further as the increase of the suction slot width. The suction slot angle has an obvious influence on the pressure inside the slot, therefore, should be considered in the design of the suction slot since the maximum pressure inside the slot is usually required.


Author(s):  
Zhiyuan Cao ◽  
Bo Liu ◽  
Ting Zhang

In order to explore the control mechanism of boundary layer suction on the separated flows of highly loaded diffusion cascades, a linear compressor cascade, which has separated flows on the whole span and three-dimensional separations over the suction surface/endwall corner, was investigated by tailored boundary layer suction. Three suction surface-slotted schemes and two combined suction surface/endwall-slotted schemes were designed. The original cascade and the cascade with part blade span suction were experimentally investigated on a high-subsonic cascade wind tunnel. In addition, numerical simulation was employed to study the flow fields of different suction schemes in detail. The results shows that while tailored boundary layer suction at part blade span can effectively remove the separations at the suction span, the flow fields of other spans deteriorated. The reasons are the ‘C’ shape or reverse ‘C’ shape spanwise distribution of static pressure after part blade span boundary layer suction. Suction surface boundary layer suction over the whole span can obviously eliminate the separation at the suction surface. However, because of the endwall boundary layer, suction surface boundary layer suction cannot effectively remove the corner three-dimensional separation. The separation over the whole span and the three-dimensional separation at the corner are completely eliminated by combined suction surface/endwall boundary layer suction. After combined boundary layer suction, the static pressure distribution over the blade span just like the shape of ‘C’ is good for the transport of the low-energy fluid near the endwall to the midspan.


Author(s):  
Longxin Zhang ◽  
Songtao Wang

Aspirated compressor is a promising design concept to enhance the power density of the compression system; however, with regard to the rear stages of multistage aspirated compressor, the blade is fairly thin. Limited by the mechanical constraints, it seems impractical to implement the boundary layer suction on the blade suction surface. So the question arising is can we replace the blade suction surface with other feasible flow control methods without implementing extra device on the blade? To address this issue, a compound flow control method, composed of the endwall boundary layer suction and tandem blade, is proposed. The design philosophy is to utilize the EBLS to suppress the three-dimensional corner stall while to use the tandem blade to control the two-dimensional airfoil flow separation. The endwall boundary layer suction is barely implemented in the forward blade, whereas the corner flow in the rear blade is restrained by the flow through the gap between the forward and rear blades. The preliminary implement strategy of the compound flow control was presented and then applied in the design of a highly loaded aspirated compressor outlet vane. Three-dimensional numerical simulations were carried out to validate its effectiveness with different inlet boundary layer distributions. Both flow fields in the outlet vane and its loss characteristics were analyzed. The results show that, by applying the compound flow control, the outlet vane could not only achieve an aggressive loading without incurring large-scale separation at the design point but also have a considerable available incidence range. Due to the implement of the endwall boundary layer suction, the tandem blade can bring out its full potential in the two-dimensional flow control. Moreover, owing to the flow through the gap of the forward and rear blades, the aspiration flow rate required for the suppression of the three-dimensional corner stall can be reduced.


2021 ◽  
Vol 143 (6) ◽  
Author(s):  
Tian Liang ◽  
Bo Liu ◽  
Stephen Spence

Abstract Control of corner separation in axial compressor blade rows has attracted much interest due to its potential to improve compressor efficiency and the energy utilization in turbomachinery. This paper investigates the effectiveness and mechanisms of boundary layer suction in controlling the corner separation of a highly loaded axial compressor cascade. Numerical simulations have been carried out to investigate the effect of different suction schemes on the loss downstream of the cascade and the change in incidence characteristics with the variation of the suction flowrate. The results show that the effectiveness of flow suction in controlling the flow separation depends heavily on the proportion of the blade for which it is applied. It was found that suction along part of the blade span on the suction surface could effectively remove the separation at the region of the span influenced by the suction slot. However, this resulted in a deterioration of the flow field at other parts of the span. The full-span suction scheme on the suction surface not only eliminated the separation of the boundary layer in the middle of the blade but also significantly improved the flow uniformity near the end-wall. Despite the improvement in flow uniformity using the full-span suction scheme, a three-dimensional (3D) corner separation still existed due to the strong cross-passage pressure gradient. To improve the flow field uniformity further, two combined suction schemes with one spanwise slot on the suction surface and another slot on the end-wall were designed in order to fully remove both the separated flow on the blade suction surface and the 3D corner separation. It was found that the total pressure loss coefficient was reduced significantly by 63.8% with suction flowrates of 1.88% and 0.82% for the slots on the suction surface and the end-wall, respectively. Further work showed that the behavior of the loss coefficient is different as the combination of suction flowrates is changed for different incidence. The cascade loss at high incidence operation can be more effectively reduced with suction control on the end-wall. When implementing combined suction, it is necessary to determine the best combination of suction flowrate according to the incidence level.


Author(s):  
Ping-Ping Chen ◽  
Wei-Yang Qiao ◽  
Karsten Liesner ◽  
Robert Meyer

The large secondary flow area in the compressor hub-corner region usually leads to three-dimensional separation in the passage with large amounts of total pressure loss. In this paper numerical simulations of a linear high-speed compressor cascade, consisting of five NACA 65-K48 stator profiles, were performed to analyze the flow mechanism of hub-corner separation for the base flow. Experimental validation is used to verify the numerical results. Active control of the hub-corner separation was investigated by using boundary layer suction. The influence of the selected locations of the endwall suction slot was investigated in an effort to quantify the gains of the compressor cascade performance. The results show that the optimal chordwise location should contain the development section of the three-dimensional corner separation downstream of the 3D corner separation onset. The best pitchwise location should be close enough to the vanes’ suction surface. Therefore the optimal endwall suction location is the MTE slot, the one from 50% to 75% chord at the hub, close to the blade suction surface. By use of the MTE slot with 1% suction flow ratio, the total-pressure loss is substantially decreased by about 15.2% in the CFD calculations and 9.7% in the measurement at the design operating condition.


2011 ◽  
Vol 134 (2) ◽  
Author(s):  
John D. Coull ◽  
Howard P. Hodson

The overall efficiency of low pressure turbines is largely determined by the two-dimensional profile loss, which is dominated by the contribution of the suction surface boundary layer. This boundary layer typically features a laminar separation bubble and is subjected to an inherently unsteady disturbance environment. The complexity of the flow behavior makes it difficult to numerically predict the profile loss. To address this problem, an empirical method is proposed for predicting the boundary layer integral parameters at the suction surface trailing edge, allowing the profile loss to be estimated. Extensive measurements have been conducted on a flat plate simulation of the suction surface boundary layer. The disturbance environment of real machines was modeled using a moving bar wake generator and a turbulence grid. From this data set, empirically based methods have been formulated using physical principles for the prediction of the momentum thickness and shape factor at the suction surface trailing edge. The predictions of these methods may be used to estimate the profile loss of a given cascade, which achieves reasonable agreement with the available data. By parameterizing the shape of the suction surface velocity distribution, the method is recast as a preliminary design tool. Powerfully, this may be used to guide the selection of the key design parameters (such as the blade loading and velocity distribution shape) and enables a reasonable estimation of the unsteady profile loss to be made at a very early stage of design. To illustrate the capabilities of the preliminary design tool, different styles of velocity distribution are evaluated for fixed blade loading and flow angles. The predictions suggest that relatively “flat-top” designs will have the lowest profile loss but good performance can also be achieved with front-loaded “peaky” distributions. The latter designs are more likely to have acceptable incidence tolerance.


Author(s):  
Xiaoqing Qiang ◽  
Songtao Wang ◽  
Weichun Lin ◽  
Zhongqi Wang

A new design concept of highly-loaded axial flow compressor by applying boundary layer suction and 3D blade technique was proposed in this paper. The basic idea of this design concept was that low reaction was adopted as while as increasing the rotor’s geometry turning angle, so that the boundary layer separation of a rotor could be eliminated and the rotor was kept working in high efficiency. This design concept would greatly increase the stator’s geometry turning angle, so boundary layer suction on stator cascades was adopted in order to restrain the boundary layer separation. In some situations, 3D blade technique was also applied in order to control the boundary layer separation more efficiently. The advantages of the above design concept were: the compressor’s pressure ratio was increased remarkably; boundary layer suction was only adopted in stator cascades so as to reduce the complexity of boundary layer suction structure. The key techniques of the new design concept were also explained in this paper. In order to increase the compressor’s pressure ratio, the geometry turning angle of rotor was increased greatly, and the rotor inlet was prewhirled to reduce the rotor’s reaction so as to restrain the rotor’s boundary separation. Boundary layer suction was carried out in the stator cascades (mainly on suction side), hub and shroud in order to control the flow separation. 3D blade technique could be adopted if necessary. The limitation of the application of this design concept was also pointed out through the analysis of the Mach number at rotor inlet, the prewhirl angle of rotor, the work distribution along span wise and the control method of stator separation. Numerical simulation was carried out on a single low-reaction compressor stage with IGV in order to demonstrate the new design concept. By using boundary layer suction and 3D blade technique, the energy loss in stator cascades was greatly reduced and the whole stage’s isentropic efficiency was about 90%. The low-reaction stage’s aerodynamic load was double than conventional design. The boundary layer separation could be effectively controlled by proper combination of boundary layer suction and bowed or twisted blade. The numerical result proved that the new design concept was feasible and had a wide application area.


Author(s):  
Stephen A. Pym ◽  
Asad Asghar ◽  
William D. E. Allan ◽  
John P. Clark

Abstract Aircraft are operating at increasingly high-altitudes, where decreased air density and engine power settings have led to increasingly low Reynolds numbers in the low-pressure turbine portion of modern-day aeroengines. These operating conditions, in parallel with highly-loaded blade profiles, result in non-reattaching laminar boundary layer separation along the blade suction surface, increasing loss and decreasing engine performance. This work presents an experimental investigation into the potential for integrated leading-edge tubercles to improve blade performance in this operating regime. A turn-table cascade test-section was constructed and commissioned to test a purpose-designed, forward-loaded, low-pressure turbine blade profile at various incidences and Reynolds numbers. Baseline and tubercled blades were tested at axial chord Reynolds numbers at and between 15 000 and 60 000, and angles of incidence ranging from −5° to +10°. Experimental data collection included blade surface pressure measurements, total pressure loss in the blade wakes, hot-wire anemometry, surface hot-film measurements, and surface flow visualization using tufts. Test results showed that the implementation of tubercles did not lead to a performance enhancement. However, useful conclusions were drawn regarding the ability of tubercles to generate stream-wise vortices at ultra-low Reynolds numbers. Additional observations helped to characterize the suction surface boundary layer over the highly-loaded, low-pressure turbine blade profile when at off-design conditions. Recommendations were made for future work.


Sign in / Sign up

Export Citation Format

Share Document