scholarly journals A combination application of tandem blade and endwall boundary layer suction in a highly loaded aspirated compressor outlet vane

Author(s):  
Longxin Zhang ◽  
Songtao Wang

Aspirated compressor is a promising design concept to enhance the power density of the compression system; however, with regard to the rear stages of multistage aspirated compressor, the blade is fairly thin. Limited by the mechanical constraints, it seems impractical to implement the boundary layer suction on the blade suction surface. So the question arising is can we replace the blade suction surface with other feasible flow control methods without implementing extra device on the blade? To address this issue, a compound flow control method, composed of the endwall boundary layer suction and tandem blade, is proposed. The design philosophy is to utilize the EBLS to suppress the three-dimensional corner stall while to use the tandem blade to control the two-dimensional airfoil flow separation. The endwall boundary layer suction is barely implemented in the forward blade, whereas the corner flow in the rear blade is restrained by the flow through the gap between the forward and rear blades. The preliminary implement strategy of the compound flow control was presented and then applied in the design of a highly loaded aspirated compressor outlet vane. Three-dimensional numerical simulations were carried out to validate its effectiveness with different inlet boundary layer distributions. Both flow fields in the outlet vane and its loss characteristics were analyzed. The results show that, by applying the compound flow control, the outlet vane could not only achieve an aggressive loading without incurring large-scale separation at the design point but also have a considerable available incidence range. Due to the implement of the endwall boundary layer suction, the tandem blade can bring out its full potential in the two-dimensional flow control. Moreover, owing to the flow through the gap of the forward and rear blades, the aspiration flow rate required for the suppression of the three-dimensional corner stall can be reduced.

Author(s):  
Zhiyuan Cao ◽  
Bo Liu ◽  
Ting Zhang

In order to explore the control mechanism of boundary layer suction on the separated flows of highly loaded diffusion cascades, a linear compressor cascade, which has separated flows on the whole span and three-dimensional separations over the suction surface/endwall corner, was investigated by tailored boundary layer suction. Three suction surface-slotted schemes and two combined suction surface/endwall-slotted schemes were designed. The original cascade and the cascade with part blade span suction were experimentally investigated on a high-subsonic cascade wind tunnel. In addition, numerical simulation was employed to study the flow fields of different suction schemes in detail. The results shows that while tailored boundary layer suction at part blade span can effectively remove the separations at the suction span, the flow fields of other spans deteriorated. The reasons are the ‘C’ shape or reverse ‘C’ shape spanwise distribution of static pressure after part blade span boundary layer suction. Suction surface boundary layer suction over the whole span can obviously eliminate the separation at the suction surface. However, because of the endwall boundary layer, suction surface boundary layer suction cannot effectively remove the corner three-dimensional separation. The separation over the whole span and the three-dimensional separation at the corner are completely eliminated by combined suction surface/endwall boundary layer suction. After combined boundary layer suction, the static pressure distribution over the blade span just like the shape of ‘C’ is good for the transport of the low-energy fluid near the endwall to the midspan.


Author(s):  
Shaowen Chen ◽  
Zhihua Zhou ◽  
Songtao Wang ◽  
Zhongqi Wang

Boundary layer suction is considered to be an available approach to restraining or even eliminating flow separation and to improve the aerodynamic performance of the compressor. In this paper, a highly loaded axial-flow aspirated compressor based on a low-reaction design concept is investigated in detail to find an appropriate flow control strategy for boundary layer suction to achieve significant performance benefit. The flow control strategy consists mainly of the arrangement of suction hole and the aspirated flow rate. The geometrical models including aspiration cannulas, stator cavity and aspiration channel are novelly applied in this research to approach a real engineering application. Complete compressor maps are predicted by a three-dimensional computational fluid dynamics simulation. The distribution of the typical aerodynamic parameters and the partial flow structures are analysed at design and off-design conditions. Three-dimensional separation near the stall point is effectively suppressed by the aspiration on both hub and shroud, and better performance is achieved by a reasonable increase of aspirated flow rate; a peak efficiency of 0.91 and a total pressure ratio of 1.055 are attained at a total aspirated flow rate of 0.024 kg/s per passage. However, sudden turning of compressor maps at low inlet flow rate occurs without the aspiration on shroud, and a noticeable deterioration in performance occurs with the decreasing of the inlet flow rate. The main reason of performance deterioration is that the flow control efficiency of aspiration is not enough for effectively suppressing three-dimensional separation near the casing corner. The difference in the aspirated flow source is owed to the distinct flow feature at various locations caused by the aspiration efficiency of suction holes. A partial auto-readjustment feature of the suction flow rate with increasing flow separation has been found. The boundary layer suction with an appropriate flow control strategy is necessary for a higher efficiency, highly loaded aspiration compressor.


Author(s):  
Ping-Ping Chen ◽  
Wei-Yang Qiao ◽  
Karsten Liesner ◽  
Robert Meyer

The large secondary flow area in the compressor hub-corner region usually leads to three-dimensional separation in the passage with large amounts of total pressure loss. In this paper numerical simulations of a linear high-speed compressor cascade, consisting of five NACA 65-K48 stator profiles, were performed to analyze the flow mechanism of hub-corner separation for the base flow. Experimental validation is used to verify the numerical results. Active control of the hub-corner separation was investigated by using boundary layer suction. The influence of the selected locations of the endwall suction slot was investigated in an effort to quantify the gains of the compressor cascade performance. The results show that the optimal chordwise location should contain the development section of the three-dimensional corner separation downstream of the 3D corner separation onset. The best pitchwise location should be close enough to the vanes’ suction surface. Therefore the optimal endwall suction location is the MTE slot, the one from 50% to 75% chord at the hub, close to the blade suction surface. By use of the MTE slot with 1% suction flow ratio, the total-pressure loss is substantially decreased by about 15.2% in the CFD calculations and 9.7% in the measurement at the design operating condition.


Author(s):  
Simon W. Evans ◽  
Howard P. Hodson

This paper documents an analysis performed to estimate the cycle cost of flow control in a compressor. The analysis is based on a series of experiments conducted in a low-speed compressor cascade at high incidence. In these experiments, flow control was applied to delay a turbulent separation on the suction surfaces of the blades in the cascade. The flow control methods studied include boundary layer suction and both steady and pulsed vortex generator jets. Endwall control was also applied to remove corner separations. Tip gaps and endwall suction were both studied for this purpose. The flow control methods studied were able to successfully delay a separation occurring on the suction surface of the blades, reducing the loss coefficient. The mass flow rates and jet supply pressures required to achieve control in each case were used to model a single flow-controlled blade row in a typical turbofan cycle using cycle analysis software. The cost of control to the cycle was calculated as the polytropic compressor efficiency increase required to maintain thrust relative to a conventional cycle with no flow control. The results of the analysis show that the benefits of flow control significantly outweigh the cost. They also show that boundary layer suction coupled with endwall suction yields the lowest cycle cost. This is because of the small pressure difference required to drive suction, which allows reinjection of the aspirated air a short distance upstream of the flow controlled blade row.


Author(s):  
Zhiyuan Cao ◽  
Bo Liu ◽  
Ting Zhang ◽  
Yibing Xu

Boundary layer suction can effectively eliminate flow separations and increase aerodynamic loading of axial compressors. The design methodology of highly loaded aspirated compressor blades was developed and illustrated in this study. In this work, Computational Fluid Dynamics (CFD) methods were first validated with existing data and then used to develop the design strategy of aspirated compressor blades. Design strategies for higher blade performances, including higher loading, larger stall margin and larger blade thickness near the suction slot of aspirated blades, were investigated through analyzing a series of highly loaded aspirated cascades with diffusion factors (DF) around 0.71. Results showed that the design methodology proposed in this paper was appropriate for designing highly loaded aspirated compressor blades. Under the condition of no boundary layer suction (BLS), severe flow separations of highly loaded blades were tailored at the aft part of suction surface by adopting the “ski-slope” velocity distribution, which almost remained unchanged within a large incidence range. The “ski-slope” velocity distribution was appropriate for removing flow separations and beneficial for obtaining thicker blade. High loading of aspirated blade was achieved by the postpositional suction peak and minimum velocity distribution on pressure surface. The stall margin of highly loaded aspirated cascades could be enlarged by designing the velocity distribution upstream of the suction slot and by selecting suction peak position and solidity. A three-dimensional (3D) highly loaded aspirated cascade was designed based on a two-dimensional (2D) cascade. Both the trailing edge separation and corner separation of the 3D highly loaded aspirated cascade were eliminated successfully with coupled suction surface and endwall suction.


Author(s):  
Fu Chen ◽  
Yanping Song ◽  
Huanlong Chen ◽  
Zhongqi Wang

The effects of boundary layer suction on the aerodynamic performance of compressor cascade are mainly determined by: (1) the location of the suction slot; (2) the suction flow rate; (3) the suction slot geometry; and (4) the aerodynamic parameters of the cascade (e.g. solidity and incidence). In this paper, an extensive numerical study has been carried out to investigate the effects of these influencing factors in a highly-loaded compressor cascade by comparing the aerodynamic performance of the cascade in order to give guidance for the application of boundary layer suction to improve the performance of modern highly-loaded compressors. The results show that boundary layer suction alleviates the accumulation of low-energy fluid at suction surface corners and enhances the ability of flow turning, and this improvement in flow behavior depends on the location of the suction slot and the suction flow rate. When the location of the suction slot and the suction flow rate are fixed, as the cascade solidity decreases from 1.819 to 1.364 and 1.091, the cascade total pressure loss is reduced at most by 25.1%, 27.7% and 32.9% respectively, and the cascade exit flow deviation is decreased by 3.1°, 4.2° and 5.0° accordingly. Moreover, boundary layer suction also has the largest effect in the cascade with smaller solidity at large positive incidences, which means that boundary layer suction is an effective way to widen the stable operating range of the highly-loaded compressor cascade. The suction slot geometry is described by the suction slot width and the suction slot angle with respect to the direction normal to the blade suction surface. The results show that the flow behavior is improved and the endwall loss is reduced further as the increase of the suction slot width. The suction slot angle has an obvious influence on the pressure inside the slot, therefore, should be considered in the design of the suction slot since the maximum pressure inside the slot is usually required.


2007 ◽  
Vol 130 (1) ◽  
Author(s):  
Semiu A. Gbadebo ◽  
Nicholas A. Cumpsty ◽  
Tom P. Hynes

One of the important ways of improving turbomachinery compressor performance is to control three-dimensional (3D) separations, which form over the suction surface and end wall corner of the blade passage. Based on the insights gained into the formation of these separations, this paper illustrates how an appropriately applied boundary layer suction of up to 0.7% of inlet mass flow can control and eliminate typical compressor stator hub corner 3D separation over a range of operating incidence. The paper describes, using computational fluid dynamics, the application of suction on the blade suction surface and end wall boundary layers and exemplifies the influence of end wall dividing streamline in initiating 3D separation in the blade passage. The removal of the separated region from the blade suction surface is confirmed by an experimental investigation in a compressor cascade involving surface flow visualization, surface static pressure, and exit loss measurements. The ensuing passage flow field is characterized by increased blade loading (static pressure difference between pressure and suction surface), enhanced average static pressure rise, significant loss removal, and a uniform exit flow. This result also enables the contribution of the 3D separation to the overall loss and passage blockage to be assessed.


2021 ◽  
Vol 143 (6) ◽  
Author(s):  
Tian Liang ◽  
Bo Liu ◽  
Stephen Spence

Abstract Control of corner separation in axial compressor blade rows has attracted much interest due to its potential to improve compressor efficiency and the energy utilization in turbomachinery. This paper investigates the effectiveness and mechanisms of boundary layer suction in controlling the corner separation of a highly loaded axial compressor cascade. Numerical simulations have been carried out to investigate the effect of different suction schemes on the loss downstream of the cascade and the change in incidence characteristics with the variation of the suction flowrate. The results show that the effectiveness of flow suction in controlling the flow separation depends heavily on the proportion of the blade for which it is applied. It was found that suction along part of the blade span on the suction surface could effectively remove the separation at the region of the span influenced by the suction slot. However, this resulted in a deterioration of the flow field at other parts of the span. The full-span suction scheme on the suction surface not only eliminated the separation of the boundary layer in the middle of the blade but also significantly improved the flow uniformity near the end-wall. Despite the improvement in flow uniformity using the full-span suction scheme, a three-dimensional (3D) corner separation still existed due to the strong cross-passage pressure gradient. To improve the flow field uniformity further, two combined suction schemes with one spanwise slot on the suction surface and another slot on the end-wall were designed in order to fully remove both the separated flow on the blade suction surface and the 3D corner separation. It was found that the total pressure loss coefficient was reduced significantly by 63.8% with suction flowrates of 1.88% and 0.82% for the slots on the suction surface and the end-wall, respectively. Further work showed that the behavior of the loss coefficient is different as the combination of suction flowrates is changed for different incidence. The cascade loss at high incidence operation can be more effectively reduced with suction control on the end-wall. When implementing combined suction, it is necessary to determine the best combination of suction flowrate according to the incidence level.


Author(s):  
Karsten Liesner ◽  
Robert Meyer

An experimental study is presented in which passive and active flow control are combined in a way that they complement and support one other. Secondary flow control using boundary layer fences is combined with a boundary layer suction in a compressor cascade at high Mach numbers. Inflow Mach number of 0.67 and Reynolds number (based on chord length) of 560.000 assure realistic conditions. The cascade, equipped with five stator vanes of NACA65 K48 type is used in an ambient condition measurement environment. Pressure measurements form the basis of the experimental investigations, flow visualization is used to obtain insight into the topology of the flow field. The boundary layer fences installed on the suction side of the vanes create a region of low-loss two dimensional flow in the center of the passage. A region of high flow loss is generated at the side wall between wall and BL fence. This region is treated with through-wall boundary layer suction as used in previous investigations. This helps stabilize the flow near the wall and prevent large separated areas. The total pressure loss is reduced remarkably and the outflow becomes more two-dimensional compared to the reference measurement and even compared to the measurement with suction applied without BL fences. The application of boundary layer fences on flow-suction experiments allows obtaining the same loss reduction gains by using lower amounts of suction.


Author(s):  
Ping-Ping Chen ◽  
Wei-Yang Qiao ◽  
Hua-Ling Luo ◽  
Farhan Ali Hashmi

Increasing the airfoil lift and decreasing the solidity of turbine cascade are the effective ways to decrease blade count which lead to the reduction of weight and hardware cost of gas turbine in aircraft engine. The challenge with this effort is to prevent the flow separation on blade suction surface and to keep the efficiency at high levels. Recent investigations on the blade-flap have demonstrated dramatic reduction in the separation losses of turbine. It would be very attractive to integrate the blade-flap in the design of enhanced loaded turbine. The critical science that will enable this design innovation is a comprehensive understanding of the effect of flow control device on the boundary layer separation. The purpose of the present work was to investigate the impact of turbine cascade solidity on loss mechanisms (airfoil lift level) and to study the feasibility to develop low solidity and highly loaded LP turbine cascade blade using blade flap. This paper is the Part I of the study concerned with performance improvement of low solidity and highly loaded LP turbine cascade blade with jet-flap. The Part II is concerned with the Gurney-flap. Investigation on three turbine cascades with same type of airfoil but different solidity is presented in this paper. These turbine cascades are all constructed with the P&W LPTs highly loaded airfoil Pack B. Two dimensional steady Reynolds-averaged Navier-Stokes equations are solved for the flow of these cascades. It is shown that appropriate jet flap could decrease turbine cascade solidity about 12.5% without the considerable increase in loss, the flow deflection of the turbine cascade mainstream can be increased by jet-flap, and then contribute to increased blade loading. Because of the augmented deflection of the cascade mainstream, the flow velocity at suction side of the adjacent blade increases. This results in extension of the flow accelerating region and reduction of flow diffusion on the blade suction surface, consequently there is a delay in the boundary layer separation and/or makes the reattachment point advanced. In fact, the neighboring blade boundary layer flow is affected by the deflection of the mainstream, not on the flow of local boundary directly.


Sign in / Sign up

Export Citation Format

Share Document