Streamwise vortex transportation and loss generation in an intermediate turbine duct

Author(s):  
Dong Fan ◽  
Chao Zhou

Annular S-shaped intermediate turbine ducts are used in modern turbofan engines with large by-pass ratios. To reduce the weight of an engine, the intermediate turbine ducts should be as short as possible, while keeping the loss at an acceptable level. Understanding the flow physics within the intermediate turbine ducts is the key to improve the intermediate turbine duct design. This paper aims to understand the transportation of the inlet streamwise vortices and loss generation in intermediate turbine ducts. First, cases with isolate incoming streamwise vortices at different spanwise locations and different axial velocities are investigated. The transportation of isolated vortex and loss generation are highly related to the interaction between vortex and boundary layer, which are mainly determined by the streamwise pressure gradient. When the axial velocity of the streamwise vortex is different to the main flow, the radial pressure gradient also has an effect. Then, the inlet condition of the intermediate turbine ducts is setup based on the flow field at the exit of a cascade, which contains the flow structures such as the tip leakage vortex, hub secondary vortex and the wake. The flow physics and the loss mechanism are analysed in detail. The formation mechanism of counter-rotating vortices pair and the influence of inlet vortex on loss generation within the intermediate turbine ducts are also presented.

2018 ◽  
Vol 140 (11) ◽  
Author(s):  
Kai Zhou ◽  
Chao Zhou

In turbines, secondary vortices and tip leakage vortices form in the blade passage and interact with each other. In order to understand the flow physics of this vortices interaction, the effects of incoming vortex on the downstream tip leakage flow are investigated by experimental, numerical, and analytical methods. In the experiment, a swirl generator was used upstream of a linear turbine cascade to generate the incoming vortex, which could interact with the downstream tip leakage vortex (TLV). The swirl generator was located at ten different pitchwise locations to simulate the quasi-steady effects. In the numerical study, a Rankine-like vortex was defined at the inlet of the computational domain to simulate the incoming swirling vortex (SV). The effects of the directions of the incoming vortices were investigated. In the case of a positive incoming SV, which has a large vorticity vector in the same direction as that of the TLV, the vortex mixes with the TLV to form one major vortex near the casing as it transports downstream. This vortices interaction reduces the loss by increasing the streamwise momentum within the TLV core. However, the negative incoming SV has little effects on the TLV and the loss. As the negative incoming SV transports downstream, it travels away from the TLV and two vortices can be identified near the casing. A triple-vortices-interaction kinetic model is used to explain the flow physics of vortex interaction, and a one-dimensional mixing analytical model are proposed to explain the loss mechanism.


Author(s):  
J.T.C Liu

Studies are presented to elucidate the role of steady streamwise vortex structures, initiated upstream from weak Görtler vortices in the absence of explicit vortex generators, and their excited nonlinear wavy instabilities in the intensification of scalar mixing in a spatially developing mixing region. While steady streamwise vortex flow gives rise to significant mixing enhancement, the excited nonlinear wavy instabilities, which in turn modify the basic three-dimensional streamwise vortices, give rise to further mixing intensification which is quantitatively assessed by a mixedness parameter. Possibility of similarity between the dimensionless streamwise momentum and scalar transport problems leading to an extended Reynolds analogy is sought. This similarity is shown earlier to hold for the steady streamwise vortex flow in the absence of nonlinear wavy instabilities (Liu & Sabry 1991 Proc. R. Soc. A 432 , 1–12). In this paper, the momentum conservation equations for the nonlinear wavy or secondary instabilities together with the advected fluctuation scalar problems are examined in detail. The presence of the streamwise fluctuation pressure gradient, which prevents the similarity, is estimated in terms of the fluctuation dynamical pressure and its relative importance to advective transport. It is found from scaling that the fluctuating streamwise pressure gradient, though not completely negligible, is sufficiently unimportant so as to render similarity between fluctuation streamwise velocity and fluctuation temperature and concentration a distinct possibility. The scalar fluctuations are then inferable from the fluctuation streamwise velocity and that the Reynolds stresses of the nonlinear fluctuations and the scalar fluxes are also similar. The nonlinear instability-modified mean streamwise momentum and the modified mean heat and mass transport problems are also similar, thus providing a complete ‘Reynolds analogy’, rendering possible the interpretation of the scalar mixedness for a gaseous medium for which the Prandtl and Schmidt numbers are near unity. It is found that the nonlinearity of the wavy instability, which induces scalar fluxes modifying the mean scalar transport, further intensifies scalar mixedness over a significant streamwise region which is well above that achieved by the steady, unmodified streamwise vortices alone for the numerical example corresponding to the most amplified wavy-sinuous mode.


1999 ◽  
Vol 121 (3) ◽  
pp. 387-397 ◽  
Author(s):  
T. V. Valkov ◽  
C. S. Tan

In a two-part paper, key computed results from a set of first-of-a-kind numerical simulations on the unsteady interaction of axial compressor stator with upstream rotor wakes and tip leakage vortices are employed to elucidate their impact on the time-averaged performance of the stator. Detailed interrogation of the computed flowfield showed that for both wakes and tip leakage vortices, the impact of these mechanisms can be described on the same physical basis. Specifically, there are two generic mechanisms with significant influence on performance: reversible recovery of the energy in the wakes/tip vortices (beneficial) and the associated nontransitional boundary layer response (detrimental). In the presence of flow unsteadiness associated with rotor wakes and tip vortices, the efficiency of the stator under consideration is higher than that obtained using a mixed-out steady flow approximation. The effects of tip vortices and wakes are of comparable importance. The impact of stator interaction with upstream wakes and vortices depends on the following parameters: axial spacing, loading, and the frequency of wake fluctuations in the rotor frame. At reduced spacing, this impact becomes significant. The most important aspect of the tip vortex is the relative velocity defect and the associated relative total pressure defect, which is perceived by the stator in the same manner as a wake. In Part 2, the focus will be on the interaction of stator with the moving upstream rotor tip and streamwise vortices, the controlling parametric trends, and implications on design.


2013 ◽  
Vol 733 ◽  
pp. 370-393 ◽  
Author(s):  
Timothy N. Jukes ◽  
Kwing-So Choi

AbstractThe streamwise vortices generated by dielectric-barrier-discharge plasma actuators in the laminar boundary layer were investigated using particle image velocimetry to understand the vortex-formation mechanisms. The plasma vortex generator was oriented along the primary flow direction to produce a body force in the spanwise direction. This created a spanwise-directed wall jet which interacted with the oncoming boundary layer to form a coherent streamwise vortex. It was found that the streamwise vortices were formed by the twisting and folding of the spanwise vorticity in the oncoming boundary layer into the outer shear layer of the spanwise wall jet, which added its own vorticity to increase the circulation along the actuator length. This is similar to the delta-shaped, vane-type vortex generator, except that the circulation was enhanced by the addition of the vorticity in the plasma jet. It was also observed that the plasma vortex was formed close to the wall with an enhanced wall-ward entrainment, which created strong downwash above the actuator.


AIAA Journal ◽  
1969 ◽  
Vol 7 (8) ◽  
pp. 1623-1625 ◽  
Author(s):  
C. J. SCOTT ◽  
C. J. BOERNER ◽  
T. M. KUZAY

2000 ◽  
Author(s):  
Hiroyuki Murata ◽  
Ken-ichi Sawada ◽  
Michiyuki Kobayashi

Abstract A series of flow visualization experiments of pulsating flow obstructed by an array of square rods was carried out to investigate its characteristics. When the pulsation is absent, Karman vortices shed periodically from each rod. When the pulsation period is relatively long compared with the shedding period and its amplitude is large, the flow is stabilized during the accelerating phase and, during the decelarating phase, the flow is destabilized and Karman vortices break down. When the pulsation period is shorter than shedding period and its amplitude is large, the flow pulsation controls the generation and breakdown of the Karman vortices. A numerical simulation code was developed and compared with the experimental results. When the pressure gradient parameter of the code is changed sinusoidally with time, computed results become the pulsating flow. Time variations of the streamwise pressure gradient and cross-sectional averaged velocity show similarity between the experimental and computed results.


Author(s):  
Yanfei Gao ◽  
Yangwei Liu

Abstract Both LES and DDES are conducted in a low-Reynolds number tip leakage flow model. The DDES uses the SST kω model and employs the same grid with the LES, but the turbulence field diverges from the LES result. Referring to the comparison between LES and DDES, a modification of the zonal function in the DDES model is proposed, which enhances the dissipation of the modeled turbulence thus promote the transition to fully LES in the tip region when the mesh is fine enough. It can generate much finer vortex structure than the original model, including the primary streamwise vortex, induced vortices and the vortex fragments after breakdown. The modification fixes the underestimation of the vorticity and pressure drop at the formation stage of the tip leakage vortex, and generates more reasonable turbulence field and energy spectra. The modified model is introduced to a real rotor simulation at engineering Reynolds number. Compared with the original model on both mean flow field and turbulence field, the modified model shows favorable agreements with the measurements. The study also gives a practical example of using the tip leakage flow model in turbulence modeling.


Sign in / Sign up

Export Citation Format

Share Document