Numerical study on the effect of blade tip clearance change on stall margin of the transonic axial flow compressor rotor

Author(s):  
Song Yan ◽  
Wuli Chu ◽  
Yu Li ◽  
YuChen Dai

The change of the blade tip clearance size has an important impact on the performance of the compressor. Considering that the performance curve of the compressor is often limited by surge and stall boundaries, this paper used the numerical simulation method to investigate the influence mechanism of the blade tip clearance size change on the stall margin of transonic axial flow compressor rotor. By mathematically decomposing the calculation formula of the stall margin of rotor, the approximate calculation formula of the change of rotor’s stall margin was obtained. Then, the detailed quantitative analysis of the factors that affect the rotor’s stall margin was carried out, the influence weights of various factors on the rotor’s stall margin was also obtained. Finally, the physical mechanism of the change of the rotor’s performance parameters was obtained by the analysis of rotor tip flow field after the blade tip clearance size change.

2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Xingen Lu ◽  
Wuli Chu ◽  
Junqiang Zhu ◽  
Yangfeng Zhang

In order to advance the understanding of the fundamental mechanisms of axial skewed slot casing treatment and their effects on the subsonic axial-flow compressor flow field, the coupled unsteady flow through a subsonic compressor rotor and the axial skewed slot was simulated with a state-of-the-art multiblock flow solver. The computational results were first compared with available measured data, that showed the numerical procedure calculates the overall effect of the axial skewed slot correctly. Then, the numerically obtained flow fields were interrogated to identify the physical mechanism responsible for improvement in stall margin of a modern subsonic axial-flow compressor rotor due to the discrete skewed slots. It was found that the axial skewed slot casing treatment can increase the stall margin of subsonic compressor by repositioning of the tip clearance flow trajectory further toward the trailing of the blade passage and retarding the movement of the incoming∕tip clearance flow interface toward the rotor leading edge plane.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6143
Author(s):  
Xiaoxiong Wu ◽  
Bo Liu ◽  
Botao Zhang ◽  
Xiaochen Mao

Numerical simulations have been performed to study the effect of the circumferential single-grooved casing treatment (CT) at multiple locations on the tip-flow stability and the corresponding control mechanism at three tip-clearance-size (TCS) schemes in a transonic axial flow compressor rotor. The results show that the CT is more efficient when its groove is located from 10% to 40% tip axial chord, and G2 (located at near 20% tip axial chord) is the best CT scheme in terms of stall-margin improvement for the three TCS schemes. For effective CTs, the tip-leakage-flow (TLF) intensity, entropy generation and tip-flow blockage are reduced, which makes the interface between TLF and mainstream move downstream. A quantitative analysis of the relative inlet flow angle indicates that the reduction of flow incidence angle is not necessary to improve the flow stability for this transonic rotor. The control mechanism may be different for different TCS schemes due to the distinction of the stall inception process. For a better application of CT, the blade tip profile should be further modified by using an optimization method to adjust the shock position and strength during the design of a more efficient CT.


2009 ◽  
Vol 2009 (0) ◽  
pp. 377-378 ◽  
Author(s):  
Hiroaki KIKUTA ◽  
Masato FURUKAWA ◽  
Satoshi GUNJISHIMA ◽  
Kenichiro IWAKIRI ◽  
Takuro KAMEDA

2006 ◽  
Vol 2006.2 (0) ◽  
pp. 149-150
Author(s):  
Sho BONKOHARA ◽  
Ken-ichiro IWAKIRI ◽  
Ryusuke OHTAGURO ◽  
Yasuhiro SHIBAMOTO ◽  
Masato FURUKAWA

1998 ◽  
Vol 120 (3) ◽  
pp. 477-486 ◽  
Author(s):  
D. W. Thompson ◽  
P. I. King ◽  
D. C. Rabe

The effects of stepped-tip gaps and clearance levels on the performance of a transonic axial-flow compressor rotor were experimentally determined. A two-stage compressor with no inlet guide vanes was tested in a modern transonic compressor research facility. The first-stage rotor was unswept and was tested for an optimum tip clearance with variations in stepped gaps machined into the casing near the aft tip region of the rotor. Nine causing geometries were investigated consisting of three step profiles at each of three clearance levels. For small and intermediate clearances, stepped tip gaps were found to improve pressure ratio, efficiency, and flow range for most operating conditions. At 100 percent design rotor speed, stepped tip gaps produced a doubling of mass flow range with as much as a 2.0 percent increase in mass flow and a 1.5 percent improvement in efficiency. This study provides guidelines for engineers to improve compressor performance for an existing design by applying an optimum casing profile.


Author(s):  
Donald W. Thompson ◽  
Paul I. King ◽  
Douglas C. Rabe

The effects of stepped tip gaps and clearance levels on the performance of a transonic axial-flow compressor rotor were experimentally determined. A two-stage compressor with no inlet guide vanes was tested in a modern transonic compressor research facility. The first-stage rotor was unswept and was tested for an optimum tip clearance with variations in stepped gaps machined into the casing near the aft tip region of the rotor. Nine casing geometries were investigated consisting of three step profiles at each of three clearance levels. For small and intermediate clearances, stepped tip gaps were found to improve pressure ratio, efficiency, and flow range for most operating conditions. At 100% design rotor speed, stepped tip gaps produced a doubling of mass flow range with as much as a 2.0% increase in mass flow and a 1.5% improvement in efficiency. This study provides guidelines for engineers to improve compressor performance for an existing design by applying an optimum casing profile.


Author(s):  
Song Yan ◽  
WuLi Chu

As one of the important components of an aero engine, the compressor plays an important role in improving the performance of the aero engine. The blade tip recess (BTR) has great potential and advantages in improving the performance of the compressor. It is very important to clarify the influence of the structure parameters of the BTR on the performance of the compressor. In this study, the two-dimensional results of the BTR were analyzed by using the method of variance analysis, and the two-dimensional calculation results of the BTR were used to guide the design of the BTR of axial flow compressor rotor. In the NASA Rotor 35, the influence rules of the structure parameters of BTR on the recess effect that was basically the same as the two-dimensional conditions. The optimization of the rotor BTR structure parameters may be achieved by the two-dimensional calculation. The flow field analysis showed the BTR can retard the growth rate of the blockage area of the leading edge of blade tip by weakening the tip clearance leakage flow intensity that delayed the occurrence of blade tip blockage and improved the aerodynamic stability of the rotor.


Author(s):  
Botao Zhang ◽  
Bo Liu ◽  
Xiaochen Mao ◽  
Hejian Wang

To investigate the effect of hub clearance of cantilever stator on the aerodynamic performance and the flow field of the transonic axial-flow compressor, the performance of single-stage compressors with the shrouded stator and cantilever stator was studied numerically. It is found that the hub corner separation on the stator blade suction surface (SS) was modified by introducing the hub leakage flow. The separation vortex on the SS of the stator blade root at about 10% axial chord length caused by the interaction of the shock wave and boundary layer was also controlled. Compared with the tip clearance size of the rotor blade, the stator hub clearance size (HCS) has a much less effect on the overall aerodynamic performance of the compressor, and there is no obvious effect on the flow field in the upstream blade row. With the increase of HCS, the leakage loss and the blockage degree in the flow field near the stator hub are increased and further make the adiabatic efficiency and the total pressure ratio of the compressor gradually decrease. Meanwhile, the stall margin of the compressor was changed slightly, but the response of the stall margin to the change of the HCS is nonlinear and insensitive. The stator hub leakage flow (HLF) can not only change the flow field near the hub but also redistribute the flow law within the range of the entire blade span. It will contribute to further understand the mechanism of the HLF and provide supports for the design of the cantilever stator of transonic compressors.


Sign in / Sign up

Export Citation Format

Share Document