Facilitating greater energy access in rural and remote areas of sub-Saharan Africa: Small hydropower

2017 ◽  
Vol 28 (3) ◽  
pp. 316-329 ◽  
Author(s):  
Williams S Ebhota ◽  
Freddie L Inambao

Flowing water has hydraulic energy that can be transformed into electrical energy, sub-Saharan Africa has an abundance of hydro resources that are untapped. In this study, various barriers limiting the use of small hydropower to tap the abundant hydro potentials for power generation are discussed. These barriers include insufficient fund; lack of adequate manufacturing infrastructure; lack of adequate power generation and distribution policies; inaccurate hydrological data; insufficient human and power infrastructure capacities; and inadequate domestic and regional participation in design and manufacture of small hydropower component devices and systems. This study sees hydro as a cleaner energy source and small hydropower as the best power system for rural and remote areas and for stand-alone electrification. For power sustainability in the region, public–private partnership, domestication of small hydropower technologies and less reliance on foreign technologies and international support are key factors.

2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Chiyembekezo S. Kaunda ◽  
Cuthbert Z. Kimambo ◽  
Torbjorn K. Nielsen

The importance of renewable energy such as small hydropower for sustainable power generation in relation to its capacity to contribute towards alleviating acute shortage of rural electricity supply in the sub-Saharan African region has been discussed. A relatively comprehensive small hydropower technology review has been presented. Rural electricity supply scenario in the region has been presented and, in general, the region has very low electricity access levels coupled with various challenges. Small hydropower technology has been discussed as one of the promising decentralised power generation system for rural electricity supply in the region. Despite challenges in data acquisition, this paper has shown that the SSA has significant hydropower resources, but the level of installation is very low. Challenges hampering SHP technology development in the region have been identified and discussed, such as those concerning technology, climate change, finance, and policy. This is basically a paper where the authors consulted a wide range of literature including journals, conference proceedings, and reports as well as expert knowledge in the area. It is hoped that this paper contributes to the information base on SHP technology which is quite lacking in the region.


Author(s):  
Peter Kayode Oniemola ◽  
Jane Ezirigwe

To achieve universal energy access will attract huge capital investments. If sub-Saharan Africa is to realize anything close to the ambitious goals set for its energy access, then new actors, innovative funding mechanisms and sustainable technologies will have to be attracted. Finance is needed for activities such as rural electrification, clean cooking facilities, diesel motors and generators, other renewable energy technologies, oil and gas infrastructures, etc. Finance is also needed in research and development of suitable technologies and funding options as well as investment in the capacity to formulate and implement sound energy policies. This chapter examines the varied financing options for energy access in sub-Saharan Africa. It argues that with appropriate laws in place and effective mechanism for implementation, African countries can significantly engage private sector financing, international financial institutions and foreign donors. The role of the law here will be in creating an enabling environment for financing.


2021 ◽  
Vol 13 (4) ◽  
pp. 2128
Author(s):  
Amollo Ambole ◽  
Kweku Koranteng ◽  
Peris Njoroge ◽  
Douglas Logedi Luhangala

Energy communities have received considerable attention in the Global North, especially in Europe, due to their potential for achieving sustainable energy transitions. In Sub-Saharan Africa (SSA), energy communities have received less attention partly due to the nascent energy systems in many emerging SSA states. In this paper, we argue that these nascent energy systems offer an opportunity to co-create energy communities that can tackle the energy access challenges faced by most SSA countries. To understand how such energy communities are realised in the sub-region, we undertake a systematic review of research on energy communities in 46 SSA countries. Our findings show that only a few energy projects exhibit the conventional characteristics of energy communities; In most of these projects, local communities are inadequately resourced to institute and manage their own projects. We thus look to stakeholder engagement approaches to propose co-design as a strategy for strengthening energy communities in SSA. We further embed our co-design proposal in energy democracy thinking to argue that energy communities can be a pathway towards equity and energy justice in SSA. We conclude that energy communities can indeed contribute to improving energy access in Africa, but they need an enabling policy environment to foster their growth and sustainability.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3916
Author(s):  
Kimball C. Chen ◽  
Matthew Leach ◽  
Mairi J. Black ◽  
Meron Tesfamichael ◽  
Francis Kemausuor ◽  
...  

Energy supply for clean cooking is a priority for Sub-Saharan Africa (SSA). Liquefied petroleum gas (LPG, i.e., propane or butane or a mixture of both) is an economically efficient, cooking energy solution used by over 2.5 billion people worldwide and scaled up in numerous low- and middle-income countries (LMICs). Investigation of the technical, policy, economic and physical requirements of producing LPG from renewable feedstocks (bioLPG) finds feasibility at scale in Africa. Biogas and syngas from the circular economic repurposing of municipal solid waste and agricultural waste can be used in two groundbreaking new chemical processes (Cool LPG or Integrated Hydropyrolysis and Hydroconversion (IH2)) to selectively produce bioLPG. Evidence about the nature and scale potential of bioLPG presented in this study justifies further investment in the development of bioLPG as a fuel that can make a major contribution toward enabling an SSA green economy and universal energy access. Techno-economic assessments of five potential projects from Ghana, Kenya and Rwanda illustrate what might be possible. BioLPG technology is in the early days of development, so normal technology piloting and de-risking need to be undertaken. However, fully developed bioLPG production could greatly reduce the public and private sector investment required to significantly increase SSA clean cooking capacity.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1627
Author(s):  
Giovanni Battista Gaggero ◽  
Mario Marchese ◽  
Aya Moheddine ◽  
Fabio Patrone

The way of generating and distributing energy throughout the electrical grid to all users is evolving. The concept of Smart Grid (SG) took place to enhance the management of the electrical grid infrastructure and its functionalities from the traditional system to an improved one. To measure the energy consumption of the users is one of these functionalities that, in some countries, has already evolved from a periodical manual consumption reading to a more frequent and automatic one, leading to the concept of Smart Metering (SM). Technology improvement could be applied to the SM systems to allow, on one hand, a more efficient way to collect the energy consumption data of each user, and, on the other hand, a better distribution of the available energy through the infrastructure. Widespread communication solutions based on existing telecommunication infrastructures instead of using ad-hoc ones can be exploited for this purpose. In this paper, we recall the basic elements and the evolution of the SM network architecture focusing on how it could further improve in the near future. We report the main technologies and protocols which can be exploited for the data exchange throughout the infrastructure and the pros and cons of each solution. Finally, we propose an innovative solution as a possible evolution of the SM system. This solution is based on a set of Internet of Things (IoT) communication technologies called Low Power Wide Area Network (LPWAN) which could be employed to improve the performance of the currently used technologies and provide additional functionalities. We also propose the employment of Unmanned Aerial Vehicles (UAVs) to periodically collect energy consumption data, with evident advantages especially if employed in rural and remote areas. We show some preliminary performance results which allow assessing the feasibility of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document