scholarly journals Stomatal density and stomatal index of fossil Buxus from coprolites of extinct Myotragus balearicus Bate (Artiodactyla, Caprinae) as evidence of increased CO2 concentration during the late Holocene

The Holocene ◽  
2014 ◽  
Vol 24 (7) ◽  
pp. 876-880 ◽  
Author(s):  
Leidy Rivera ◽  
Elena Baraza ◽  
Josep A Alcover ◽  
Pere Bover ◽  
Carla M Rovira ◽  
...  
2015 ◽  
Vol 11 (4) ◽  
pp. 2615-2647 ◽  
Author(s):  
X.-Y. Liu ◽  
Q. Gao ◽  
M. Han ◽  
J.-H. Jin

Abstract. late Eocene pCO2 concentration is estimated based on the species of Nageia maomingensis Jin et Liu from the late Eocene of Maoming Basin, Guangdong Province. This is the first paleoatmospheric estimates for the late Eocene of South China using stomatal data. Studies of stomatal density (SD) and stomatal index (SI) with N. motleyi (Parl.) De Laub., the nearest living equivalent species of the fossil, indicate that the SD inversely responds to atmospheric CO2 concentration, while SI has almost no relationships with atmospheric CO2 concentration. Therefore, the pCO2 concentration is reconstructed based on the SD of the fossil leaves in comparison with N. motleyi. Results suggest that the mean CO2 concentration was 391.0 ± 41.1 ppmv or 386.5 ± 27.8 ppmv during the late Eocene, which is significantly higher than the CO2 concentrations documented from 1968 to 1955 but similar to the values for current atmosphere indicating that the Carbon Dioxide levels during that the late Eocene at that time may have been similar to today.


2000 ◽  
Vol 27 (5) ◽  
pp. 451 ◽  
Author(s):  
Mark J. Hovenden ◽  
Tim Brodribb

Gas exchange measurements were made on saplings of Southern Beech, Nothofagus cunninghamii (Hook.) Oerst. collected from three altitudes (350, 780 and 1100 m above sea level) and grown in a common glasshouse trial. Plants were grown from cuttings taken 2 years earlier from a number of plants at each altitude in Mt Field National Park, Tasmania. Stomatal density increased with increasing altitude of origin, and stomatal con-ductance and carbon assimilation rate were linearly related across all samples. The altitude of origin influenced thestomatal conductance and therefore carbon assimilation rate, with plants from 780 m having a greater photosynthetic rate than those from 350 m. The intercellular concentration of CO2 as a ratio of external CO2 concentration (ci/ca) was similar in all plants despite the large variation in maximum stomatal conductance. Carboxylation efficiency was greater in plants from 780 m than in plants from 350 m. Altitude of origin has a strong influence on the photo-synthetic performance of N. cunninghamii plants even when grown under controlled conditions, and this influence is expressed in both leaf biochemistry (carboxylation efficiency) and leaf morphology (stomatal density).


2017 ◽  
Vol 52 (1) ◽  
pp. 1-6 ◽  
Author(s):  
AA Abdul Rahaman ◽  
OM Olaniran ◽  
FA Oladele

The effect of industrial effluents was studied with respect to growth and leaf anatomy of three Sesamum indicum varieties (NGB 00931, NGB 00937 and NGB 00939). Industrial effluents (25%, 50%, 75% and 100%) from two industries are used to irrigate the plants. Although, the control plants possessed larger leaves and longer stems than the effluent-treated plants, at lower concentration, the plant growth is relatively higher. Gradual decrease in the germination of seeds and seedling growth with increase in effluent concentration was observed. The best germination and seedling growth was observed at the 25% concentration. Leaf epidermal features (stomatal density, stomatal index, stomatal size, trichome density, tricome index, trichome size and number of epidermal cells) are more influenced in the effluent-treated plants than in the control plants from the Peace Standard Pharmaceutical Industry than in the effluent from the Global Soap & Detergent Industry. Thus the industrial effluents can be safely used for irrigation purposes with proper treatment and dilution at 25%.Bangladesh J. Sci. Ind. Res. 52(1), 1-6, 2017


2014 ◽  
Vol 51 ◽  
pp. 411-420 ◽  
Author(s):  
Kristin Jordal ◽  
Rahul Anantharaman ◽  
Magnus Genrup ◽  
Thor Aarhaug ◽  
Jørn Bakken ◽  
...  

2020 ◽  
Author(s):  
Wellington L Almeida ◽  
Rodrigo T Ávila ◽  
Junior P Pérez-Molina ◽  
Marcela L Barbosa ◽  
Dinorah M S Marçal ◽  
...  

Abstract The overall coordination between gas exchanges and plant hydraulics may be affected by soil water availability and source-to-sink relationships. Here we evaluated how branch growth and mortality, leaf gas exchange and metabolism are affected in coffee (Coffea arabica L.) trees by drought and fruiting. Field-grown plants were irrigated or not, and maintained with full or no fruit load. Under mild water deficit, irrigation per se did not significantly impact growth but markedly reduced branch mortality in fruiting trees, despite similar leaf assimilate pools and water status. Fruiting increased net photosynthetic rate in parallel with an enhanced stomatal conductance, particularly in irrigated plants. Mesophyll conductance and maximum RuBisCO carboxylation rate remained unchanged across treatments. The increased stomatal conductance in fruiting trees over nonfruiting ones was unrelated to internal CO2 concentration, foliar abscisic acid (ABA) levels or differential ABA sensitivity. However, stomatal conductance was associated with higher stomatal density, lower stomatal sensitivity to vapor pressure deficit, and higher leaf hydraulic conductance and capacitance. Increased leaf transpiration rate in fruiting trees was supported by coordinated alterations in plant hydraulics, which explained the maintenance of plant water status. Finally, by preventing branch mortality, irrigation can mitigate biennial production fluctuations and improve the sustainability of coffee plantations.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chuancheng Zhu ◽  
Yusong Hu ◽  
Hude Mao ◽  
Shumin Li ◽  
Fangfang Li ◽  
...  

The stomatal index of the leaf is the ratio of the number of stomata to the total number of stomata and epidermal cells. Comparing with the stomatal density, the stomatal index is relatively constant in environmental conditions and the age of the leaf and, therefore, of diagnostic characteristics for a given genotype or species. Traditional assessment methods involve manual counting of the number of stomata and epidermal cells in microphotographs, which is labor-intensive and time-consuming. Although several automatic measurement algorithms of stomatal density have been proposed, no stomatal index pipelines are currently available. The main aim of this research is to develop an automated stomatal index measurement pipeline. The proposed method employed Faster regions with convolutional neural networks (R-CNN) and U-Net and image-processing techniques to count stomata and epidermal cells, and subsequently calculate the stomatal index. To improve the labeling speed, a semi-automatic strategy was employed for epidermal cell annotation in each micrograph. Benchmarking the pipeline on 1,000 microscopic images of leaf epidermis in the wheat dataset (Triticum aestivum L.), the average counting accuracies of 98.03 and 95.03% for stomata and epidermal cells, respectively, and the final measurement accuracy of the stomatal index of 95.35% was achieved. R2 values between automatic and manual measurement of stomata, epidermal cells, and stomatal index were 0.995, 0.983, and 0.895, respectively. The average running time (ART) for the entire pipeline could be as short as 0.32 s per microphotograph. The proposed pipeline also achieved a good transferability on the other families of the plant using transfer learning, with the mean counting accuracies of 94.36 and 91.13% for stomata and epidermal cells and the stomatal index accuracy of 89.38% in seven families of the plant. The pipeline is an automatic, rapid, and accurate tool for the stomatal index measurement, enabling high-throughput phenotyping, and facilitating further understanding of the stomatal and epidermal development for the plant physiology community. To the best of our knowledge, this is the first deep learning-based microphotograph analysis pipeline for stomatal index assessment.


2011 ◽  
Vol 136 (2) ◽  
pp. 103-108 ◽  
Author(s):  
Madhulika Sagaram ◽  
Leonardo Lombardini ◽  
L.J. Grauke

Leaf anatomical traits of Mexican and U.S. pecan [Carya illinoinensis (Wangenh.) K. Koch] seedstocks grown in a single location were studied to determine patterns of ecogeographic variation within the natural range. Stomatal density was uniform among open-pollinated seedlings of a common maternal parent with twofold differences in stomatal density separating some seedstocks. There was an inverse relationship between stomatal density and epidermal cell density. Stomatal density and stomatal index of Mexican seedstocks were related to longitude and annual precipitation of origin. Stomatal density increased along the longitudinal gradient toward the east coast of Mexico; seedstocks originating from areas on the east coast of Mexico had greater stomatal density than seedstocks originating from the drier areas on the west coast. Stomatal density and stomatal index did not follow a pattern along latitude or longitude in the U.S. seedstocks. Although isotopic carbon (13C) discrimination did not vary greatly in Mexican seedstocks, the reduction in stomatal density in pecan trees from areas with reduced annual precipitation suggest the presence of an anatomical feature to reduce water losses.


Sign in / Sign up

Export Citation Format

Share Document