Terrestrial and aquatic palynomorphs in Holocene sediments from the Chukchi–Alaskan margin, western Arctic Ocean: Implications for the history of marine circulation and climatic environments

The Holocene ◽  
2016 ◽  
Vol 27 (7) ◽  
pp. 976-986 ◽  
Author(s):  
So-Young Kim ◽  
Leonid Polyak ◽  
Irina Delusina

Two sediment cores from the Chukchi Sea margin north of Alaska were analyzed for palynological composition including terrestrial and aquatic palynomorphs. Based on 13 radiocarbon ages, the investigated sedimentary record represents most of the Holocene with a century to multidecadal age resolution. Three palynological zones were discriminated based on the abundance of major palynomorph groups (terrestrial and freshwater palynomorphs and dinoflagellate cysts) and composition of spore and pollen assemblages. They are interpreted in terms of depositional and paleoclimatic changes including predominance of redeposition by meltwater or sea ice in the early-Holocene, a strong input of contemporaneous material related to Pacific water advection culminating after ca. 6000 yr BP, and more subtle changes in the late-Holocene. It is concluded that depositional environments, such as current transportation and mixing, have an overall major control on palynomorph distribution. The climatic factors may have also played an important role in palynomorph abundance and composition, especially in the middle- to late-Holocene, when circulation changes were less dramatic than during the flooding of the Bering Strait and the shallow Chukchi Sea shelf. Comprehending these linkages requires a better knowledge of the Holocene vegetation history in the coastal areas of Alaska and Chukchi Peninsula.

1995 ◽  
Vol 44 (2) ◽  
pp. 283-293 ◽  
Author(s):  
Ian C. Wright ◽  
Matt S. McGlone ◽  
Campbell S. Nelson ◽  
Brad J. Pillans

AbstractPaleoceanographic and onshore paleoclimatic changes during the last 59,000 yr are established from three deep-sea sediment cores off northeast New Zealand using an integrated log of sediment texture, CaCO3 content, palynology, and planktonic and benthic foraminiferal δ18O and δ13C data, together with dated silicic tephras. These records from the isotopic stage 4-3 boundary to the present record northern New Zealand vegetation history, changes in a subsidiary equatorward flow of Circumpolar Deep Water, and sea-surface temperatures (SSTs) for subtropical water (STW) between latitudes 36°42′ and 35°51′S. Relative to the Holocene, isotopically derived SSTs record average changes of +2°C, -2°C, and -2°C for the 59,000-43,000, 43,000-24,000, and 24,000-12,000 yr time slices, respectively. The apparent +2°C warming for the 59,000-43,000 yr period is interpreted to reflect changes in the dominant depth habitat of Globigerina bulloides in response to upwelling. A -2°C cooling of SSTs during isotope stage 2 is interpreted, in part, to reflect upwelling of cool subsurface water resulting from strong and persistent westerly airflow across New Zealand, with the concomitant enhanced surface-water production of CaCO3. Onshore, vegetation consistent with these changes are recorded, with full conifer-hardwood forest prior to 43,000 yr, followed by a change to vegetation implying cooler and drier conditions between 43,000 and 12,000 yr, and a subsequent return to full forest during the Holocene. The sequence of biopelagic and hemipelagic sedimentation observed within these cores reflect oscillation of sea level about a threshold eustatic level that controls the transport of terrigenous detritus offshore. Local variations and interplay of the regional oceanography and morphology and tectonism of the continental shelf will dictate that, relative to present sea level, this threshold eustatic sea level will vary in depth, and hence age, along a continental margin. Data from the New Zealand region reveal an extremely steep meridional thermal gradient across the southern and central New Zealand region during the last glaciation with minor cooling of STW to the north, apart from localized nearshore upwelling zones, but pronounced cooling of subantarctic water to the south of the subtropical convergence zone.


2009 ◽  
Vol 6 (11) ◽  
pp. 2421-2431 ◽  
Author(s):  
M. Chierici ◽  
A. Fransson

Abstract. In the summer of 2005, we sampled surface water and measured pH and total alkalinity (AT) underway aboard IB Oden along the Northwest Passage from Cape Farewell (South Greenland) to the Chukchi Sea. We investigated the variability of carbonate system parameters, focusing particularly on carbonate concentration [CO32−] and calcium carbonate saturation states, as related to freshwater addition, biological processes and physical upwelling. Measurements on AT, pH at 15°C, salinity (S) and sea surface temperature (SST), were used to calculate total dissolved inorganic carbon (CT), [CO32−] and the saturation of aragonite (ΩAr) and calcite (ΩCa) in the surface water. The same parameters were measured in the water column of the Bering Strait. Some surface waters in the Canadian Arctic Archipelago (CAA) and on the Mackenzie shelf (MS) were found to be undersaturated with respect to aragonite (ΩAr<1). In these areas, surface water was low in AT and CT (<1500 μmol kg−1) relative to seawater and showed low [CO32−]. The low saturation states were probably due to the likely the effect of dilution due to freshwater addition by sea ice melt (CAA) and river runoff (MS). High AT and CT and low pH, corresponded with the lowest [CO32−], ΩAr and ΩCa, observed near Cape Bathurst and along the South Chukchi Peninsula. This was linked to the physical upwelling of subsurface water with elevated CO2. The highest surface ΩAr and ΩCa of 3.0 and 4.5, respectively, were found on the Chukchi Sea shelf and in the cold water north of Wrangel Island, which is heavily influenced by high CO2 drawdown and lower CT from intense biological production. In the western Bering Strait, the cold and saline Anadyr Current carries water that is enriched in AT and CT from enhanced organic matter remineralization, resulting in the lowest ΩAr (~1.2) of the area.


The Holocene ◽  
2017 ◽  
Vol 28 (5) ◽  
pp. 814-826 ◽  
Author(s):  
Boo-Keun Khim ◽  
Mi Jung Lee ◽  
Hyen Goo Cho ◽  
Kwangkyu Park

Diverse paleoceanographic proxies from three sediment cores (GC12ex, JPC35, and JPC30) collected from the Chukchi Shelf north of the Bering Strait elucidate the Holocene paleoceanographic changes (surface water productivity and sediment transport) caused by the Bering Strait throughflow from the Bering Sea into the Chukchi Sea. Lithology of three sediment cores identified the same three units. Based on comparison and correlation to adjacent age-dated cores as well as AMS 14C dates of core GC12ex, the boundary between Unit 1 and Unit 2a is dated about 8500 cal. yr BP, and the boundary between Unit 2a and Unit 2b is also dated about 4500 cal. yr BP. Consistent down-core profiles of the geochemical and isotopic properties among the three cores differentiate the paleoceanographic conditions corresponding to lithologic units. Based on the biogenic opal, total organic carbon, and δ13C values, Unit 1 is characterized by low surface water marine productivity under relatively shallow water with weak transport of Bering Strait throughflow. Unit 2a shows a mixture of terrestrial and marine contributions, indicating the onset of increased marine surface water productivity after the main flooding (~11,500 cal. yr BP) of the Bering Strait by the Holocene sea-level rise. Unit 2b exhibits stable and enhanced marine biogenic opal production similar to the present-day oceanographic conditions. Such paleoceanographic changes were confirmed by the clay minerals (smectite, illite, kaolinite, and chlorite) and detrital isotopes (εNd and 87Sr/86Sr). Thus, the Bering Strait throughflow played an important role on surface water productivity and sediment deposition in the Chukchi Shelf in response to Holocene sea-level rise after the opening of the Bering Strait.


2017 ◽  
Vol 89 (1) ◽  
pp. 75-89 ◽  
Author(s):  
Paula A. Rodríguez-Zorro ◽  
Bruno Turcq ◽  
Renato C. Cordeiro ◽  
Luciane S. Moreira ◽  
Renata L. Costa ◽  
...  

AbstractLocated at the northwestern part of the Amazon basin, Rio Negro is the largest black-water river in the world and is one of the poorest studied regions of the Amazon lowlands. In the middle-upper part of the Rio Negro were retrieved sediment cores form Lake Acarabixi, which were analyzed using pollen, spores, charcoal, and geochemistry. The aim of this study was to detect the influences from humans and river dynamics on the vegetation history in the region. Two main periods of vegetation and river dynamics were detected. From 10,840 to 8240 cal yr BP, the river had a direct influence into the lake. The lake had a regional input of charcoal particles, which reflected the effect of the dry Holocene period in the basin. Furthermore, highland taxa such asHedyosmumandMyrsinewere found at that time along with igapó forest species that are characteristic to tolerate extended flooding likeEschweilera,Macrolobium, Myrtaceae,Swartzia, andAstrocaryum. During the late Holocene (1600 to 650 cal yr BP), more lacustrine phases were observed. There were no drastic changes in vegetation but the presence of pioneer species likeVismiaandCecropia, along with the signal of fires, which pointed to human disturbances.


1995 ◽  
Vol 73 (10) ◽  
pp. 1618-1627 ◽  
Author(s):  
J. S. McLachlan ◽  
L. B. Brubaker

The postglacial vegetation history of the northeastern Olympic Peninsula was investigated at different spatial scales by comparing the pollen, macrofossil, and charcoal records from a low elevation lake (Crocker Lake) and a nearby forested swamp (Cedar Swamp). The regional pollen record from Crocker Lake revealed a parkland of coniferous species with divergent modern ecological tolerances, including Pinus contorta, Picea sitchensis, and Abies lasiocarpa during the late glacial period (~ 13 000 – 10 000 BP). Disturbance-adapted species such as Alnus rubra and Pseudotsuga menziesii dominated forests during the early Holocene (10 000 – 7000 BP). Modern forests containing mesic late-successional species such as Tsuga heterophylla and Thuja plicata were established during the late Holocene (7000 BP to present). During the late glacial period, the local vegetation at Cedar Swamp was dominated by Alnus sinuata. Hydrologic changes resulted in the establishment of a deep marsh during the early Holocene. Hydrosere succession from an open aquatic environment to a forested wetland and disturbance-mediated alternations between Thuja plicata and Alnus rubra characterized the local vegetation during the late Holocene. Throughout the Holocene, the vegetation of the northeastern Olympic Peninsula was governed by broad climatic and physiographic parameters at the regional scale and the effects of local geomorphologic constraints and disturbance history at the finer landscape scale. Key words: fossil pollen, vegetation history, Olympic Peninsula, Quaternary.


2017 ◽  
Author(s):  
Masanobu Yamamoto ◽  
Seung-Il Nam ◽  
Leonid Polyak ◽  
Daisuke Kobayashi ◽  
Kenta Suzuki ◽  
...  

Abstract. The Beaufort Gyre (BG) and the Bering Strait inflow (BSI) are important elements of the Arctic Ocean circulation system and major controls on the distribution of Arctic sea ice. We report records of the quartz/feldspar and chlorite/illite ratios in three sediment cores from the northern Chukchi Sea providing insights into the long-term dynamics of the BG circulation and the BSI during the Holocene. The quartz/feldspar ratio, a proxy of the BG strength, gradually decreased during the Holocene, suggesting a long-term decline in the BG strength, consistent with orbitally-controlled decrease in summer insolation. We suppose that the BG rotation weakened as a result of increasing stability of sea-ice cover at the margins of the Canada Basin, driven by decreasing insolation. Millennial to multi-centennial variability in the quartz/feldspar ratio (the BG circulation) is consistent with fluctuations in solar irradiance, suggesting that solar activity affected the BG strength on these timescales. The BSI approximated by the chlorite/illite record shows intensified flow from the Bering Sea to the Arctic during the middle Holocene, which is attributed primarily to the effect of an overall weaker Aleutian Low. The middle Holocene intensification of the BSI was associated with decrease in sea ice concentrations and increase in marine production, as indicated by biomarker concentrations, suggesting an influence of the BSI on sea ice distribution and biological production in the Chukchi Sea.


2009 ◽  
Vol 6 (3) ◽  
pp. 4963-4991 ◽  
Author(s):  
M. Chierici ◽  
A. Fransson

Abstract. In the summer of 2005, we sampled surface water and measured pH and total alkalinity (AT) underway aboard IB Oden along the Northwest Passage from Cape Farwell (South Greenland) to the Chukchi Sea. We investigated variability of carbonate system parameters, focusing particularly on carbonate concentration [CO32−] and calcium carbonate saturation states, as related to freshwater addition, biological processes and physical upwelling. Measurements on AT, pH at 15°C, salinity (S) and sea surface temperature (SST), were used to calculate total dissolved inorganic carbon (DIC), [CO32−] and saturation of aragonite (ΩAr) and calcite (ΩCa) in the surface water. The same parameters were measured in the water column of the Bering Strait. Some surface waters in the Canadian Arctic Archipelago (CAA) and on the Mackenzie shelf (MS) were found to be undersaturated with respect to aragonite (ΩAr<1). In these areas, surface water was low in AT and DIC (<1500 μmol kg−1) relative to seawater and showed low [CO32−]. The low saturation states were probably due to the effect of dilution due from freshwater addition by sea ice melt (CAA) and river runoff (MS). High AT and DIC and low pH, corresponded with the lowest [CO32−], ΩAr and ΩCa, observed near Cape Bathurst and along the South Chukchi Peninsula. This was linked to physical upwelling of subsurface water with elevated CO2. Highest surface ΩAr and ΩCa of 3.0 and 4.5, respectively, were found on the Chukchi Sea shelf and in the cold water north of Wrangel Island, which is heavily influenced by high CO2 drawdown and lower DIC from intense biological production. In the western Bering Strait, the cold and saline Anadyr Current carries water that is enriched in AT and DIC from enhanced organic matter remineralization, resulting in the lowest ΩAr (~1.2) of the area.


2021 ◽  
Vol 15 (8) ◽  
pp. 4073-4097
Author(s):  
Matt O'Regan ◽  
Thomas M. Cronin ◽  
Brendan Reilly ◽  
Aage Kristian Olsen Alstrup ◽  
Laura Gemery ◽  
...  

Abstract. The northern sector of the Greenland Ice Sheet is considered to be particularly susceptible to ice mass loss arising from increased glacier discharge in the coming decades. However, the past extent and dynamics of outlet glaciers in this region, and hence their vulnerability to climate change, are poorly documented. In the summer of 2019, the Swedish icebreaker Oden entered the previously unchartered waters of Sherard Osborn Fjord, where Ryder Glacier drains approximately 2 % of Greenland's ice sheet into the Lincoln Sea. Here we reconstruct the Holocene dynamics of Ryder Glacier and its ice tongue by combining radiocarbon dating with sedimentary facies analyses along a 45 km transect of marine sediment cores collected between the modern ice tongue margin and the mouth of the fjord. The results illustrate that Ryder Glacier retreated from a grounded position at the fjord mouth during the Early Holocene (> 10.7±0.4 ka cal BP) and receded more than 120 km to the end of Sherard Osborn Fjord by the Middle Holocene (6.3±0.3 ka cal BP), likely becoming completely land-based. A re-advance of Ryder Glacier occurred in the Late Holocene, becoming marine-based around 3.9±0.4 ka cal BP. An ice tongue, similar in extent to its current position was established in the Late Holocene (between 3.6±0.4 and 2.9±0.4 ka cal BP) and extended to its maximum historical position near the fjord mouth around 0.9±0.3 ka cal BP. Laminated, clast-poor sediments were deposited during the entire retreat and regrowth phases, suggesting the persistence of an ice tongue that only collapsed when the glacier retreated behind a prominent topographic high at the landward end of the fjord. Sherard Osborn Fjord narrows inland, is constrained by steep-sided cliffs, contains a number of bathymetric pinning points that also shield the modern ice tongue and grounding zone from warm Atlantic waters, and has a shallowing inland sub-ice topography. These features are conducive to glacier stability and can explain the persistence of Ryder's ice tongue while the glacier remained marine-based. However, the physiography of the fjord did not halt the dramatic retreat of Ryder Glacier under the relatively mild changes in climate forcing during the Holocene. Presently, Ryder Glacier is grounded more than 40 km seaward of its inferred position during the Middle Holocene, highlighting the potential for substantial retreat in response to ongoing climate change.


1976 ◽  
Vol 6 (4) ◽  
pp. 581-596 ◽  
Author(s):  
H.E. Wright

For more than a century it has been postulated that the Holocene vegetation of western Europe has changed in significant ways. A half-century ago a lively debate revolved on whether there were one or two dry intervals causing bogs to dry out and become forested, or whether instead the climate warmed to a maximum and then cooled. Today none of these climatic schemes is accepted without reservation, because two nonclimatic factors are recognized as significant: the differential immigration rates of dominant tree types (e.g., spruce in the north and beech in the south) brought unexpected changes in forest composition, and Neolithic man cleared the forest for agriculture and thereby disrupted the natural plant associations.In North America some of the same problems exist. In the hardwood forests of the Northeast, which are richer than but otherwise not unlike those of western Europe, the successive spread of white pine, hemlock, beech, hickory, and chestnut into oakdominated forests provides a pollen sequence that may yield no climatic message. On the other hand, on the ecotone between these hardwood forests and the conifer forests of the Great Lakes-St. Lawrence area, the southward expansion of spruce, fir, and tamarack in the late Holocene implies a climatic cooling of regional importance, although the progressive conversion of lakes to wetlands favored the expansion of wetland forms of these genera.In the southeastern states the late-Holocene expansion of southern pines has uncertain climatic significance. About all that can be said about the distribution and ecology of the 10 or so species is that some of them favor sandy soils and are adapted to frequent fires. In coastal areas the expansion of pines was accompanied by development of great swamps like Okefenokee and the Everglades—perhaps related to the stabilization of the water table after the early Holocene rise of sea level. The vegetation replaced by the pines in Florida consisted of oak scrub with prairie-like openings, indicating dry early Holocene conditions, which in fact had also prevailed during the time of Wisconsin glaciation.In the Midwest the vegetation history provides a clearer record of Holocene climatic change, at least along the prairie border in Minnesota. With the withdrawal of the boreal spruce forest soon after ice retreat, pine forest and hardwood forest succeeded rapidly, as in the eastern states. But prairie was not far behind. By 7000 years ago the prairie had advanced into east-central Minnesota, 75 miles east of its present limit. It then withdrew to the west, as hardwoods expanded again, followed by conifers from the north. The sequence easily fits the paleoclimatic concept of gradual warming and drying to a maximum, followed by cooling to the present day. It is supported by independent fossil evidence from lake sediments, showing that lakes were shallow or even intermittently dry during mid-Holocene time.Here we have a paleoclimatic pattern that is consistent with the record from glaciers in the western mountains—a record that involves a late-Holocene Neoglaciation after a mid-Holocene interval of distant glacial recession. Just as the Neoglaciation is time-transgressive, according to the review of its evidence by Porter and Denton, so also is the mid-Holocene episode of maximum warmth, and they are thus both geologicclimate units. The warm episode is commonly termed the Hypsithermal, which, however, was defined by Deevey and Flint as a time-stratigraphic unit that is supposed to have time-parallel rather than time-transgressive boundaries. It was defined on the basis of pollen-zone boundaries in western Europe and the northeastern United States that have a sound biogeographic but questionable paleoclimatic basis. Perhaps it should be redefined as Porter and Denton suggest, as a geologic-climate unit with recognizable time-transgressive boundaries that match the gradual geographic shifts in the general circulation of the atmosphere and the resulting location of storm tracks and weather patterns. Holocene glacial and vegetational progressions provide a good record of climatic change, if one can work out the lag effects related to the glacial economy and the geographic factors controlling tree migration. The terminology for the Holocene, where so much time control is available, should indicate the dynamic character not only of the climate but also of the geologic and biogeographic processes controlled by climate.


2017 ◽  
Vol 13 (9) ◽  
pp. 1111-1127 ◽  
Author(s):  
Masanobu Yamamoto ◽  
Seung-Il Nam ◽  
Leonid Polyak ◽  
Daisuke Kobayashi ◽  
Kenta Suzuki ◽  
...  

Abstract. The Beaufort Gyre (BG) and the Bering Strait inflow (BSI) are important elements of the Arctic Ocean circulation system and major controls on the distribution of Arctic sea ice. We report records of the quartz ∕ feldspar and chlorite ∕ illite ratios in three sediment cores from the northern Chukchi Sea, providing insights into the long-term dynamics of the BG circulation and the BSI during the Holocene. The quartz ∕ feldspar ratio, interpreted as a proxy of the BG strength, gradually decreased during the Holocene, suggesting a long-term decline in the BG strength, consistent with an orbitally controlled decrease in summer insolation. We propose that the BG rotation weakened as a result of the increasing stability of sea-ice cover at the margins of the Canada Basin, driven by decreasing insolation. Millennial to multi-centennial variability in the quartz ∕ feldspar ratio (the BG circulation) is consistent with fluctuations in solar irradiance, suggesting that solar activity affected the BG strength on these timescales. The BSI approximation by the chlorite ∕ illite record, despite a considerable geographic variability, consistently shows intensified flow from the Bering Sea to the Arctic during the middle Holocene, which is attributed primarily to the effect of higher atmospheric pressure over the Aleutian Basin. The intensified BSI was associated with decrease in sea-ice concentrations and increase in marine production, as indicated by biomarker concentrations, suggesting a major influence of the BSI on sea-ice and biological conditions in the Chukchi Sea. Multi-century to millennial fluctuations, presumably controlled by solar activity, were also identified in a proxy-based BSI record characterized by the highest age resolution.


Sign in / Sign up

Export Citation Format

Share Document