scholarly journals The Holocene dynamics of Ryder Glacier and ice tongue in north Greenland

2021 ◽  
Vol 15 (8) ◽  
pp. 4073-4097
Author(s):  
Matt O'Regan ◽  
Thomas M. Cronin ◽  
Brendan Reilly ◽  
Aage Kristian Olsen Alstrup ◽  
Laura Gemery ◽  
...  

Abstract. The northern sector of the Greenland Ice Sheet is considered to be particularly susceptible to ice mass loss arising from increased glacier discharge in the coming decades. However, the past extent and dynamics of outlet glaciers in this region, and hence their vulnerability to climate change, are poorly documented. In the summer of 2019, the Swedish icebreaker Oden entered the previously unchartered waters of Sherard Osborn Fjord, where Ryder Glacier drains approximately 2 % of Greenland's ice sheet into the Lincoln Sea. Here we reconstruct the Holocene dynamics of Ryder Glacier and its ice tongue by combining radiocarbon dating with sedimentary facies analyses along a 45 km transect of marine sediment cores collected between the modern ice tongue margin and the mouth of the fjord. The results illustrate that Ryder Glacier retreated from a grounded position at the fjord mouth during the Early Holocene (> 10.7±0.4 ka cal BP) and receded more than 120 km to the end of Sherard Osborn Fjord by the Middle Holocene (6.3±0.3 ka cal BP), likely becoming completely land-based. A re-advance of Ryder Glacier occurred in the Late Holocene, becoming marine-based around 3.9±0.4 ka cal BP. An ice tongue, similar in extent to its current position was established in the Late Holocene (between 3.6±0.4 and 2.9±0.4 ka cal BP) and extended to its maximum historical position near the fjord mouth around 0.9±0.3 ka cal BP. Laminated, clast-poor sediments were deposited during the entire retreat and regrowth phases, suggesting the persistence of an ice tongue that only collapsed when the glacier retreated behind a prominent topographic high at the landward end of the fjord. Sherard Osborn Fjord narrows inland, is constrained by steep-sided cliffs, contains a number of bathymetric pinning points that also shield the modern ice tongue and grounding zone from warm Atlantic waters, and has a shallowing inland sub-ice topography. These features are conducive to glacier stability and can explain the persistence of Ryder's ice tongue while the glacier remained marine-based. However, the physiography of the fjord did not halt the dramatic retreat of Ryder Glacier under the relatively mild changes in climate forcing during the Holocene. Presently, Ryder Glacier is grounded more than 40 km seaward of its inferred position during the Middle Holocene, highlighting the potential for substantial retreat in response to ongoing climate change.

2021 ◽  
Author(s):  
Matt ORegan ◽  
Thomas Cronin ◽  
Brendan Reilly ◽  
Aage Kristian Olsen Alstrup ◽  
Laura Gemery ◽  
...  

Abstract. The northern sector of the Greenland ice sheet is considered to be particularly susceptible to ice mass loss arising from increased glacier discharge in the coming decades. However, the past extent and dynamics of outlet glaciers in this region, and hence their vulnerability to climate change, are poorly documented. In the summer of 2019, the Swedish icebreaker Oden entered the previously unchartered waters of Sherard Osborn Fjord, where Ryder Glacier drains approximately 2 % of Greenland's ice sheet into the Lincoln Sea. Here we reconstruct the Holocene dynamics of Ryder Glacier and its ice tongue by combining radiocarbon dating with sedimentary facies analyses along a 45 km transect of marine sediment cores collected between the modern ice tongue margin and the mouth of the fjord. The results illustrate that Ryder Glacier retreated from a grounded position at the fjord mouth during the Early Holocene (>10.7 ± 0.4 cal ka BP) and receded more than 120 km to the end of Sherard Osborn Fjord by the Middle Holocene (6.3 ± 0.3 cal ka BP), likely becoming completely land-based. A re-advance of Ryder Glacier occurred in the Late Holocene, becoming marine-based around 3.9 ± 0.4 cal ka BP. An ice tongue, similar in extent to its current position was established in the Late Holocene (between 3.6 ± 0.4 and 2.9 ± 0.4 cal ka BP) and extended to its maximum historical position near the fjord mouth around 0.9 ± 0.3 cal ka BP. Laminated, clast-poor sediments were deposited during the entire retreat and regrowth phases, suggesting the persistence of an ice tongue that only collapsed when the glacier retreated behind a prominent topographic high at the landward end of the fjord. Sherard Osborn Fjord narrows inland, is constrained by steep-sided cliffs, contains a number of bathymetric pinning points that also shield the modern ice tongue and grounding zone from warm Atlantic waters, and has a shallowing inland sub-ice topography. These features are conducive to glacier stability and can explain the persistence of Ryder’s ice tongue while the glacier remained marine-based. However, the physiography of the fjord did not halt the dramatic retreat of Ryder Glacier under the relatively mild changes in climate forcing during the Holocene. Presently, Ryder Glacier is grounded more than 40 km seaward of its inferred position during the Middle Holocene, highlighting the potential for substantial retreat in response to ongoing climate change.


The Holocene ◽  
2018 ◽  
Vol 28 (7) ◽  
pp. 1160-1172 ◽  
Author(s):  
Samuel E Kelley ◽  
Jason P Briner ◽  
Sandy L O’Hara

The observational record of ice margin position reveals asynchrony in both the timing and magnitude of Greenland Ice Sheet (GrIS) margin fluctuations and illustrates the complex reactions of ice sheets to climatic perturbations. In this study, we reconstruct the timing and pattern of middle- and late-Holocene GrIS margin fluctuations at two locations, ~190 km apart, in central West Greenland using radiocarbon-dated sediment cores from proglacial-threshold lakes. Our results demonstrate that deglaciation occurs at both sites during the early Holocene, with the ice sheet remaining in a smaller-than-present ice margin configuration until ~500 years ago when it readvanced into lake catchments at both sites. At our northern site, Sermeq Kujatdleq, the late-Holocene advance of the GrIS approached maximum position during the past 280 years, with the culmination of the advance occurring at AD 1992–1994, and modern retreat was underway by AD 1998–2001. In contrast, field and observational evidence suggest that the GrIS at our southern site, Nordenskiöld Gletscher, has been advancing or stable throughout the 20th century. These results, in conjunction with previous work in the region, highlight the asynchronous nature of late-Holocene advances and subsequent modern retreat, implying that local variability, such as ice velocity or ice dynamics, is responsible for modulating ice margin response to changes in climate on these decadal to centennial timescales. Additional high-resolution records of past ice sheet fluctuations are needed to inform and more accurately constrain our predictions of future cryosphere response to changes in climate.


2018 ◽  
Vol 64 (245) ◽  
pp. 477-488 ◽  
Author(s):  
LISBETH T. NIELSEN ◽  
GUðFINNA AÐALGEIRSDÓTTIR ◽  
VASILEIOS GKINIS ◽  
ROMAN NUTERMAN ◽  
CHRISTINE S. HVIDBERG

ABSTRACTThe Holocene climatic optimum was a period 8–5 kyr ago when annual mean surface temperatures in Greenland were 2–3°C warmer than present-day values. However, this warming left little imprint on commonly used temperature proxies often used to derive the climate forcing for simulations of the past evolution of the Greenland ice sheet. In this study, we investigate the evolution of the Greenland ice sheet through the Holocene when forced by different proxy-derived temperature histories from ice core records, focusing on the effect of sustained higher surface temperatures during the early Holocene. We find that the ice sheet retreats to a minimum volume of ~0.15–1.2 m sea-level equivalent smaller than present in the early or mid-Holocene when forcing an ice-sheet model with temperature reconstructions that contain a climatic optimum, and that the ice sheet has continued to recover from this minimum up to present day. Reconstructions without a warm climatic optimum in the early Holocene result in smaller ice losses continuing throughout the last 10 kyr. For all the simulated ice-sheet histories, the ice sheet is approaching a steady state at the end of the 20th century.


2020 ◽  
Author(s):  
Antoon Kuijpers ◽  
Marit-Solveig Seidenkrantz ◽  
Ralph Schneider ◽  
Camilla S. Andresen ◽  
Signe Hygom Jacobsen ◽  
...  

<p>Knowledge of the impact of past climate warming on Greenland Ice Sheet stability is an important issue for assessing  thresholds that are critical for a potential ice sheet collapse. For the late Holocene, evidence has recently been found of a so-called 4.2 ka BP event(1) including a prominent warming spike in several ice core records from Greenland and Canada (Agassiz).  Also lake records from both Northwest(2) and South Greenland(3) support pronounced summer warming during that time. After c. 4.0 ka BP NW Greenland July air temperature dropped by about 3<sup>o</sup> C. Coeval with this exceptional atmospheric warming anomaly over northern Canada and parts of Greenland, abrupt cooling and freshening affected  the N-Atlantic subpolar gyre where Labrador Sea deep convection ceased(4). Northern N-Atlantic climate generally deteriorated. With our contribution we present Holocene sub-bottom profiling  and sedimentary shelf and  fjord records from Southwest Greenland and Disko Bay that indicate exceptional Greenland Ice Sheet melting 4.4-4.0 ka BP at a rate and magnitude not recorded since early Holocene deglaciation. Extremely strong melt water discharge resulted in erosion of fjord sediments(5) and local deposition of up to several meters thick meltwater sediment on the shelf(6-8).  Timing of this melting event corresponds to a significant anomaly in hydrographic parameters of the Labrador Current off Newfoundland(9,10), which is concluded to have resulted in thermohaline perturbation of the N-Atlantic Subpolar gyre.   </p><ul><li>(1) Weiss, H. 2019. Clim Past doi:10.5194/cp-2018-162-RC2</li> <li>(2) McFarlin, J.M. et al. 2018. PNAS doi:10.1073/pnas.1720420115</li> <li>(3) Andresen, C.S. et al. 2004. J Quat Sci 19(8) doi:10.1002/jqs.886</li> <li>(4) Klus, A. et al. 2018. Clim Past doi:10.5194/cp-14-1165-2018</li> <li>(5) Ren, J. et al. 2009. Mar Micropal doi:10.1016/j.marmicro.2008.12.003</li> <li>(6) Hygom Jacobsen, S. 2019. Master Thesis Aarhus Univ, Dept. of Geoscience, pp105</li> <li>(7) Schneider, R. 2015. Cruise Rep epic.awi.de/id/eprint/37062/131/msm-44-46-expeditionsheft.pdf</li> <li>(8) Kuijpers, A. et al. 2001. Geol. Greenland Surv Bull 189, 41-47</li> <li>(9) Solignac, S. et al. 2011. The Holocene, doi: 10.1177/0959683610385720</li> <li>(10) Orme, L. et al 2019. The Holocene (submitted)</li> </ul>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sofia Ribeiro ◽  
Audrey Limoges ◽  
Guillaume Massé ◽  
Kasper L. Johansen ◽  
William Colgan ◽  
...  

AbstractHigh Arctic ecosystems and Indigenous livelihoods are tightly linked and exposed to climate change, yet assessing their sensitivity requires a long-term perspective. Here, we assess the vulnerability of the North Water polynya, a unique seaice ecosystem that sustains the world’s northernmost Inuit communities and several keystone Arctic species. We reconstruct mid-to-late Holocene changes in sea ice, marine primary production, and little auk colony dynamics through multi-proxy analysis of marine and lake sediment cores. Our results suggest a productive ecosystem by 4400–4200 cal yrs b2k coincident with the arrival of the first humans in Greenland. Climate forcing during the late Holocene, leading to periods of polynya instability and marine productivity decline, is strikingly coeval with the human abandonment of Greenland from c. 2200–1200 cal yrs b2k. Our long-term perspective highlights the future decline of the North Water ecosystem, due to climate warming and changing sea-ice conditions, as an important climate change risk.


2021 ◽  
Author(s):  
Joanna Davies ◽  
Anders Møller Mathiasen ◽  
Kristiane Kristensen ◽  
Christof Pearce ◽  
Marit-Solveig Seidenkrantz

<p>The polar regions exhibit some of the most visible signs of climate change globally; annual mass loss from the Greenland Ice Sheet (GrIS) has quadrupled in recent decades, from 51 ± 65 Gt yr<sup>−1</sup> (1992-2001) to 211 ± 37 Gt yr<sup>−1</sup> (2002-2011). This can partly be attributed to the widespread retreat and speed-up of marine-terminating glaciers. The Zachariae Isstrøm (ZI) is an outlet glacier of the Northeast Greenland Ice Steam (NEGIS), one of the largest ice streams of the GrIS (700km), draining approximately 12% of the ice sheet interior. Observations show that the ZI began accelerating in 2000, resulting in the collapse of the floating ice shelf between 2002 and 2003. By 2014, the ice shelf extended over an area of 52km<sup>2</sup>, a 95% decrease in area since 2002, where it extended over 1040km<sup>2</sup>. Paleo-reconstructions provide an opportunity to extend observational records in order to understand the oceanic and climatic processes governing the position of the grounding zone of marine terminating glaciers and the extent of floating ice shelves. Such datasets are thus necessary if we are to constrain the impact of future climate change projections on the Arctic cryosphere.</p><p>A multi-proxy approach, involving grain size, geochemical, foraminiferal and sedimentary analysis was applied to marine sediment core DA17-NG-ST8-92G, collected offshore of the ZI, on  the Northeast Greenland Shelf. The aim was to reconstruct changes in the extent of the ZI and the palaeoceanographic conditions throughout the Early to Mid Holocene (c.a. 12,500-5,000 cal. yrs. BP). Evidence from the analysis of these datasets indicates that whilst there has been no grounded ice at the site over the last 12,500 years, the ice shelf of the ZI extended as a floating ice shelf over the site between 12,500 and 9,200 cal. yrs. BP, with the grounding line further inland from our study site. This was followed by a retreat in the ice shelf extent during the Holocene Thermal Maximum; this was likely to have been governed, in part, by basal melting driven by Atlantic Water (AW) recirculated from Svalbard or from the Arctic Ocean. Evidence from benthic foraminifera suggest that there was a shift from the dominance of AW to Polar Water at around 7,500 cal. yrs. BP, although the ice shelf did not expand again despite of this cooling of subsurface waters.</p>


2013 ◽  
Vol 9 (4) ◽  
pp. 1629-1643 ◽  
Author(s):  
M. Blaschek ◽  
H. Renssen

Abstract. The relatively warm early Holocene climate in the Nordic Seas, known as the Holocene thermal maximum (HTM), is often associated with an orbitally forced summer insolation maximum at 10 ka BP. The spatial and temporal response recorded in proxy data in the North Atlantic and the Nordic Seas reveals a complex interaction of mechanisms active in the HTM. Previous studies have investigated the impact of the Laurentide Ice Sheet (LIS), as a remnant from the previous glacial period, altering climate conditions with a continuous supply of melt water to the Labrador Sea and adjacent seas and with a downwind cooling effect from the remnant LIS. In our present work we extend this approach by investigating the impact of the Greenland Ice Sheet (GIS) on the early Holocene climate and the HTM. Reconstructions suggest melt rates of 13 mSv for 9 ka BP, which result in our model in an ocean surface cooling of up to 2 K near Greenland. Reconstructed summer SST gradients agree best with our simulation including GIS melt, confirming that the impact of the early Holocene GIS is crucial for understanding the HTM characteristics in the Nordic Seas area. This implies that modern and near-future GIS melt can be expected to play an active role in the climate system in the centuries to come.


2017 ◽  
Vol 13 (12) ◽  
pp. 1771-1790 ◽  
Author(s):  
Ny Riavo Gilbertinie Voarintsoa ◽  
Loren Bruce Railsback ◽  
George Albert Brook ◽  
Lixin Wang ◽  
Gayatri Kathayat ◽  
...  

Abstract. Petrographic features, mineralogy, and stable isotopes from two stalagmites, ANJB-2 and MAJ-5, respectively from Anjohibe and Anjokipoty caves, allow distinction of three intervals of the Holocene in NW Madagascar. The Malagasy early Holocene (between ca. 9.8 and 7.8 ka) and late Holocene (after ca. 1.6 ka) intervals (MEHI and MLHI, respectively) record evidence of stalagmite deposition. The Malagasy middle Holocene interval (MMHI, between ca. 7.8 and 1.6 ka) is marked by a depositional hiatus of ca. 6500 years. Deposition of these stalagmites indicates that the two caves were sufficiently supplied with water to allow stalagmite formation. This suggests that the MEHI and MLHI intervals may have been comparatively wet in NW Madagascar. In contrast, the long-term depositional hiatus during the MMHI implies it was relatively drier than the MEHI and the MLHI. The alternating wet–dry–wet conditions during the Holocene may have been linked to the long-term migrations of the Intertropical Convergence Zone (ITCZ). When the ITCZ's mean position is farther south, NW Madagascar experiences wetter conditions, such as during the MEHI and MLHI, and when it moves north, NW Madagascar climate becomes drier, such as during the MMHI. A similar wet–dry–wet succession during the Holocene has been reported in neighboring locations, such as southeastern Africa. Beyond these three subdivisions, the records also suggest wet conditions around the cold 8.2 ka event, suggesting a causal relationship. However, additional Southern Hemisphere high-resolution data will be needed to confirm this.


2019 ◽  
Vol 116 (25) ◽  
pp. 12261-12269 ◽  
Author(s):  
William Nordhaus

Concerns about the impact on large-scale earth systems have taken center stage in the scientific and economic analysis of climate change. The present study analyzes the economic impact of a potential disintegration of the Greenland ice sheet (GIS). The study introduces an approach that combines long-run economic growth models, climate models, and reduced-form GIS models. The study demonstrates that social cost–benefit analysis and damage-limiting strategies can be usefully extended to illuminate issues with major long-term consequences, as well as concerns such as potential tipping points, irreversibility, and hysteresis. A key finding is that, under a wide range of assumptions, the risk of GIS disintegration makes a small contribution to the optimal stringency of current policy or to the overall social cost of climate change. It finds that the cost of GIS disintegration adds less than 5% to the social cost of carbon (SCC) under alternative discount rates and estimates of the GIS dynamics.


1995 ◽  
Vol 41 (137) ◽  
pp. 51-60 ◽  
Author(s):  
Thomas L. Mote ◽  
Mark R. Anderson

AbstractA simple microwave-emission model is used to simulate 37 GHz brightness temperatures associated with snowpack-melt conditions for locations across the Greenland ice sheet. The simulated values are utilized as threshold values and compared to daily, gridded SMMR and SSM/I passive-microwave data, in order to reveal regions experiencing melt. The spatial extent of the area classified as melting is examined on a daily, monthly and seasonal (May-August) basis for 1979–91. The typical seasonal cycle of melt coverage shows melt beginning in late April, a rapid increase in the melting area from mid-May to mid-July, a rapid decrease in melt extent from late July through mid-August, and cessation of melt in late September. Seasonal averages of the daily melt extents demonstrate an apparent increase in melt coverage over the 13 year period of approximately 3.8% annually (significant at the 95% confidence interval). This increase is dominated by statistically significant positive trends in melt coverage during July and August in the west and southwest of the ice sheet. We find that a linear correlation between microwave-derived melt extent and a surface measure of ablation rate is significant in June and July but not August, so caution must be exercised in using the microwave-derived melt extents in August. Nevertheless, knowledge of the variability of snowpack melt on the Greenland ice sheet as derived from microwave data should prove useful in detecting climate change in the Arctic and examining the impact of climate change on the ice sheet.


Sign in / Sign up

Export Citation Format

Share Document