High-resolution climatic (monsoonal) variability reconstructed from a continuous ~2700-year sediment record from Northwest Himalaya (Ladakh)

The Holocene ◽  
2019 ◽  
Vol 30 (3) ◽  
pp. 441-457 ◽  
Author(s):  
Choudhurimayum Pankaj Sharma ◽  
Suman Lata Rawat ◽  
Pradeep Srivastava ◽  
Narendra K Meena ◽  
Rajesh Agnihotri ◽  
...  

A chronologically well-constrained sedimentary archive from Upshi (Ladakh) was studied using a multi-proxy approach namely palynology, environmental magnetism, total organic carbon (TOC), total nitrogen (TN), stable isotopes of carbon and nitrogen providing a continuous vegetation, and paleoenvironmental history spanning the last ~2700 years with a temporal resolution of ~43 years. Pollen assemblage shows non-arboreal pollen (NAP) and non-pollen palynomorph (NPP) were dominant around the Upshi from ~2646 to 2431 cal. yr BP, indicating warmer conditions. Arboreal pollen (AP) and NAP gradually increased from 2431 to 1860 cal. yr BP in the study area, under warm and wet conditions, corresponding to the Roman Warm Period (RWP). This phase also witnessed enhanced sediment δ15N and χlf values. From ~1860 to ~1154 cal. yr BP increased Chenopodiaceae/Amaranthaceae and substantial spread of NPP suggest decreased temperature and prevalence of cold-dry climate. This period also records declining trends of χlf, δ15N, δ13Corg, TOC, and TN contents. From ~1154 to 293 cal. yr BP, the vegetation type reversed to mixed conifer and broad-leaved forest with significant increase in herbaceous taxa, rising δ15N, δ13Corg, TOC, and TN suggesting warm and wet conditions in the study area. This period broadly corresponds to the ‘Medieval Warm Period’ (MWP). Among all the proxies employed, depth profiles of TOC and TN (wt%) appear to respond best against external climate forcing showing remarkable correlation(s) with residual Δ14C in atmosphere, indicating dominance of intrinsic solar variability on regional climate/environment. The reconstructed recorded is well connected with established historical events and cultural activities of the Eurasian region.

Author(s):  
Hui Wang ◽  
Bing Wang ◽  
Xiang Niu ◽  
Qingfeng Song ◽  
Haonan Bai ◽  
...  

We analyzed the plant-litter-soil continuum to investigate the carbon and nitrogen distribution and ecological stoichiometry of an evergreen broad-leaved forest at Dagangshan Mountain, Jiangxi. The results showed that the average C and N contents and C:N ratios in the leaves and fine roots among 6 different tree species were 401.87g/kg, 21.41g/kg, 19.27 and 348.64g/kg, 15.73g/kg, 23.97, respectively; the average C and N contents and C:N ratios were 323.06 g/kg, 12.76 g/kg, 25.58 respectively in leaf litter, and 16.40 g/kg, 1.09 g/kg, 16.27 respectively for soil. In contrast with the C content, the total N content of the fine roots and litter had a high coefficient of variation and a high spatial heterogeneity. We ranked the six different representative tree species according to total C and N content in leaves and fine roots. The results for each species were generally consistent with each other, showing a positive correlation relationship between total C and N content in the leaves and roots. Among them, S. discolor (Champ. ex Benth.) Muell. plants displayed high carbon and nitrogen storage capacities, and on the other hand, C. fargesii Franch., C. myrsinifolia (Blume) Oersted, A. fortunei (Hemsl.) Makino, and V. fordii (Hemsl.) Airy Shaw showed a high nitrogen transfer rate. Total soil N and C decreased with depth. Soil organic carbon (SOC), soil resistant organic carbon (ROC), total N, alkali nitrogen, NH4+-N and NO3--N contents were all also negative correlated with soil depth, but the contents of the NH4+-N and NO3--N did not change significantly; The spatial distribution of soil NO3--N was significantly heterogeneous. At 0-10 cm soil depth, SOC was positively correlated with alkaline nitrogen, and at 10-20 cm soil depth, SOC was significantly positively correlated with total N. In general, when soil carbon was abundant, nitrogen supply capacity was also high.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 490
Author(s):  
Xin Liu ◽  
Xuefei Cheng ◽  
Nan Wang ◽  
Miaojing Meng ◽  
Zhaohui Jia ◽  
...  

Shear strength is an important mechanical property of soil, as its mechanical function plays critical roles in reducing land degradation and preventing soil erosion. However, shear strength may be affected by vegetation type through changes in the soil and root patterns. To understand the influences of different types of vegetation on shear strength, the soil shear indices of three typical vegetation types (broad-leaved forest, coniferous broad-leaved mixed forest, and grassland) were studied and evaluated at the Fengyang Mountain Nature Reserve, China. We employed a direct shear apparatus to measure the soil shear resistance index. We quantified the soil porosity, moisture content, and composition of particle size to determine the properties of the soil, and a root scanner was used to quantify the root index. The results revealed that there were significant differences in shear resistance indices at the stand level. Between the three vegetation types, the internal friction angle of the broad-leaved forest was the largest and the cohesion was the smallest. The soil moisture content and porosity of the coniferous broad-leaved mixed forest were higher than those of the broad-leaved forest, and the root volume density (RVD/cm3) of the broad-leaved forest was higher than that of the coniferous and broad-leaved mixed forest and grassland. Structural equation modeling results show that the soil particle size and root characteristics indirectly impacted the soil water content by affecting porosity, which finally affected shear strength. In general, there were significant differences in soil properties and plant root indices between the different stands, which had an impact on soil shear strength.


1999 ◽  
Vol 52 (2) ◽  
pp. 250-258 ◽  
Author(s):  
Qinhua Jiang ◽  
Dolores R. Piperno

Paleoecological data from Poyang Lake, southern China, indicate that significant natural and human-induced vegetational changes have occurred during the Late Quaternary in the Middle Yangtze River valley, the likely location of rice (Oryza sativa L.) domestication. During the late Pleistocene (from ca. 12,830 to ca. 10,500 yr B.P.), the climate was cooler and drier than today's. The subtropical, mixed deciduous–evergreen broad-leaved forest which constitutes the modern, potential vegetation was reduced and herbaceous vegetative cover expanded. A hiatus in sedimentation occurred in Poyang Lake, beginning sometime after ca. 10,500 yr B.P. and lasting until the middle Holocene (ca. 4000 yr B.P.). At ca. 4000 yr B.P., the regional vegetation was a diverse, broad-leaved forest dominated by many of the same arboreal elements (e.g., Quercus, Castanopsis, Liquidambar) that grow in the area today. A significant reduction of arboreal pollen and an increase of herbaceous pollen at ca. 2000 yr B.P. probably reflect human influence on the vegetation and the expansion of intensive rice agriculture into the dryland forests near the river valleys.


1996 ◽  
pp. 64-67 ◽  
Author(s):  
Nguen Nghia Thin ◽  
Nguen Ba Thu ◽  
Tran Van Thuy

The tropical seasonal rainy evergreen broad-leaved forest vegetation of the Cucphoung National Park has been classified and the distribution of plant communities has been shown on the map using the relations of vegetation to geology, geomorphology and pedology. The method of vegetation mapping includes: 1) the identifying of vegetation types in the remote-sensed materials (aerial photographs and satellite images); 2) field work to compile the interpretation keys and to characterize all the communities of a study area; 3) compilation of the final vegetation map using the combined information. In the classification presented a number of different level vegetation units have been identified: formation classes (3), formation sub-classes (3), formation groups (3), formations (4), subformations (10) and communities (19). Communities have been taken as mapping units. So in the vegetation map of the National Park 19 vegetation categories has been shown altogether, among them 13 are natural primary communities, and 6 are the secondary, anthropogenic ones. The secondary succession goes through 3 main stages: grassland herbaceous xerophytic vegetation, xerophytic scrub, dense forest.


Sign in / Sign up

Export Citation Format

Share Document