Exposure matters: Forest dynamics reveal an early Holocene conifer refugium on a north facing slope in Central Europe

The Holocene ◽  
2020 ◽  
Vol 30 (12) ◽  
pp. 1833-1848
Author(s):  
Zsuzsanna Anna Pató ◽  
Tibor Standovár ◽  
Mariusz Gałka ◽  
Gusztáv Jakab ◽  
Mihály Molnár ◽  
...  

Although several studies provide a broad overview of vegetation changes in the Carpathian Basin during the Holocene, stand-scale vegetation changes are lesser known because of the rarity of suitable sampling sites. In this study we investigated the sediment of a small closed-canopy site (Nagy-forrás forest hollow, 685 m a.s.l., 0.1 ha), located in the Mátra Mountains, on the north facing slope of Kékes (1014 m a.s.l.). We carried out detailed pollen, conifer stomata and plant macrofossil analyses, as well as radiocarbon dating to examine Late Glacial and Holocene dynamics of vegetation development. The site dates back to ca. 15,500 cal yr BP, when open boreal forests and wet tundra-like habitats occurred around the hollow. Closed forest cover developed around 14,600 cal yr BP, when a boreal European larch-Swiss stone pine ( Larix decidua-Pinus cembra) forest surrounded the hollow. This vegetation type remained stable up to 7700 cal yr BP. We observed a hiatus between 7700 and 2710 cal yr BP, followed by a beech ( Fagus sylvatica) dominated mixed temperate deciduous forest. Our results confirmed that the area was covered by a primary forest, as human influence was visible only from 175 cal yr BP. The relatively long lasting persistence of Pinus cembra in the Holocene at relatively low altitude was documented, which has never been found in Holocene sediments in the Pre-Carpathians before. We hypothesize that the north facing slope acted as a cold-stage refugium in the Early Holocene and could play the same role for the present-day beech forest that is threatened by recent climate change.

1977 ◽  
Vol 8 (1) ◽  
pp. 64-96 ◽  
Author(s):  
J. Christopher Bernabo ◽  
Thompson Webb

By mapping the data from 62 radiocarbon-dated pollen diagrams, this paper illustrates the Holocene history of four major vegetational regions in northeastern North America. Isopoll maps, difference maps, and isochrone maps are used in order to examine the changing patterns within the data set and to study broad-scale and long-term vegetational dynamics. Isopoll maps show the distributions of spruce (Picea), pine (Pinus), oak (Quercus), herb (nonarboreal pollen groups excluding Cyperaceae), and birch + maple + beech + hemlock (Betula, Acer, Fagus, Tsuga) pollen at specified times from 11,000 BP to present. Difference maps were constructed by subtracting successive isopoll maps and illustrate the changing patterns of pollen abundances from one time to the next. The isochrone maps portray the movement of ecotones and range limits by showing their positions at a sequence of times during the Holocene. After 11,000 BP, the broad region over which spruce pollen had dominated progressively shrank as the boreal forest zone was compressed between the retreating ice margin and the rapidly westward and northward expanding region where pine was the predominant pollen type. Simultaneously, the oak-pollen-dominated deciduous forest moved up from the south and the prairie expanded eastward. By 7000 BP, the prairie had attained its maximum eastward extent with the period of its most rapid expansion evident between 10,000 and 9000 BP. Many of the trends of the early Holocene were reversed after 7000 BP with the prairie retreating westward and the boreal and other zones edging southward. In the last 500 years, man's impact on the vegetation is clearly visible, especially in the greatly expanded region dominated by herb pollen. The large scale changes before 7000 BP probably reflect shifts in the macroclimatic patterns that were themselves being modified by the retreat and disintegration of the Laurentide ice sheet. Subsequent changes in the pollen and vegetation were less dramatic than those of the early Holocene.


2020 ◽  
Author(s):  
Min Ran

<p>The climate in the Altai Mountains is highly sensitive to large-scale forcing factors because of its special geographic location. Based on n-alkane data of 150 samples and with a chronologic support of 15 accelerator mass spectrometry (AMS) dates from a 600-cm core at GHZ Peat, the Holocene climatic changes in the Altai Mountains were reconstructed. The reconstruction revealed a warming and drying early Holocene (~10,750-~8500 cal. yr BP), a cooling and persistent dry middle Holocene (~8500-~4500 cal. yr BP), and a cooling and wetting late Holocene (~4500-~700 cal. yr BP). The Holocene temperature changes were primarily controlled by the summer solar radiation with a certain time lag in the early Holocene and also modulated by solar activity, and the time lag in the early Holocene was probably resulted from ice and permafrost melting. The Holocene moisture in the southern Altai Mountains was likely modulated by the North Atlantic Oscillations (NAO) or by the Atlantic Multi-centennial Oscillations (i.e., AMO-like) or by temperature, and or by any combination of the three (NAO, AMO-like, and temperature).</p>


1976 ◽  
Vol 6 (4) ◽  
pp. 581-596 ◽  
Author(s):  
H.E. Wright

For more than a century it has been postulated that the Holocene vegetation of western Europe has changed in significant ways. A half-century ago a lively debate revolved on whether there were one or two dry intervals causing bogs to dry out and become forested, or whether instead the climate warmed to a maximum and then cooled. Today none of these climatic schemes is accepted without reservation, because two nonclimatic factors are recognized as significant: the differential immigration rates of dominant tree types (e.g., spruce in the north and beech in the south) brought unexpected changes in forest composition, and Neolithic man cleared the forest for agriculture and thereby disrupted the natural plant associations.In North America some of the same problems exist. In the hardwood forests of the Northeast, which are richer than but otherwise not unlike those of western Europe, the successive spread of white pine, hemlock, beech, hickory, and chestnut into oakdominated forests provides a pollen sequence that may yield no climatic message. On the other hand, on the ecotone between these hardwood forests and the conifer forests of the Great Lakes-St. Lawrence area, the southward expansion of spruce, fir, and tamarack in the late Holocene implies a climatic cooling of regional importance, although the progressive conversion of lakes to wetlands favored the expansion of wetland forms of these genera.In the southeastern states the late-Holocene expansion of southern pines has uncertain climatic significance. About all that can be said about the distribution and ecology of the 10 or so species is that some of them favor sandy soils and are adapted to frequent fires. In coastal areas the expansion of pines was accompanied by development of great swamps like Okefenokee and the Everglades—perhaps related to the stabilization of the water table after the early Holocene rise of sea level. The vegetation replaced by the pines in Florida consisted of oak scrub with prairie-like openings, indicating dry early Holocene conditions, which in fact had also prevailed during the time of Wisconsin glaciation.In the Midwest the vegetation history provides a clearer record of Holocene climatic change, at least along the prairie border in Minnesota. With the withdrawal of the boreal spruce forest soon after ice retreat, pine forest and hardwood forest succeeded rapidly, as in the eastern states. But prairie was not far behind. By 7000 years ago the prairie had advanced into east-central Minnesota, 75 miles east of its present limit. It then withdrew to the west, as hardwoods expanded again, followed by conifers from the north. The sequence easily fits the paleoclimatic concept of gradual warming and drying to a maximum, followed by cooling to the present day. It is supported by independent fossil evidence from lake sediments, showing that lakes were shallow or even intermittently dry during mid-Holocene time.Here we have a paleoclimatic pattern that is consistent with the record from glaciers in the western mountains—a record that involves a late-Holocene Neoglaciation after a mid-Holocene interval of distant glacial recession. Just as the Neoglaciation is time-transgressive, according to the review of its evidence by Porter and Denton, so also is the mid-Holocene episode of maximum warmth, and they are thus both geologicclimate units. The warm episode is commonly termed the Hypsithermal, which, however, was defined by Deevey and Flint as a time-stratigraphic unit that is supposed to have time-parallel rather than time-transgressive boundaries. It was defined on the basis of pollen-zone boundaries in western Europe and the northeastern United States that have a sound biogeographic but questionable paleoclimatic basis. Perhaps it should be redefined as Porter and Denton suggest, as a geologic-climate unit with recognizable time-transgressive boundaries that match the gradual geographic shifts in the general circulation of the atmosphere and the resulting location of storm tracks and weather patterns. Holocene glacial and vegetational progressions provide a good record of climatic change, if one can work out the lag effects related to the glacial economy and the geographic factors controlling tree migration. The terminology for the Holocene, where so much time control is available, should indicate the dynamic character not only of the climate but also of the geologic and biogeographic processes controlled by climate.


2017 ◽  
Vol 8 (2) ◽  
pp. 365-376 ◽  
Author(s):  
E. Hance Ellington ◽  
Sean W. Gess ◽  
Erin L. Koen ◽  
Joseph E. Duchamp ◽  
Matthew J. Lovallo ◽  
...  

Abstract Fishers (Pekania pennanti) are often associated with the coniferous and mixed forests of the northern United States and central Canada, and their ecology has been studied extensively in portions of their distributional range. Recently, natural range expansion and reintroductions have led to recolonization by fishers to portions of the central Appalachian Mountains, where deciduous forest is the dominant vegetation type. We used noninvasive hair-snare surveys and microsatellite genetic analysis to detect fishers in the central Appalachian Mountains of Pennsylvania. We used these detections within an occupancy modeling framework to explore habitat patch use by fishers and the forest characteristics and land use features that influenced it. We found that the likelihood of patch use by fishers was related to forests with higher proportions of low-density residential areas. Our results also suggested that lower road densities might be related to higher likelihood of fisher patch use. Fishers in Pennsylvania tolerated some forms of land development. Patch use was not driven by forest type or canopy cover, at least within our deciduous forest-dominated study areas. Future research identifying threshold values at which forest cover and land development affect patch use by fishers in the central Appalachian Mountains will better inform management decisions with respect to sites for future reintroduction of fishers.


Oryx ◽  
2000 ◽  
Vol 34 (4) ◽  
pp. 287-304 ◽  
Author(s):  
Nathalie Seddon ◽  
Joe Tobias ◽  
James W. Yount ◽  
Julien Rémi Ramanampamonjy ◽  
Stuart Butchart ◽  
...  

AbstractThe dry forests constitute one of the most distinct, yet least protected, ecosystems in Madagascar, an island renowned for high levels of endemism. They have generally been considered one of the most intact of Madagascar's climax vegetation types and accordingly have received little conservation effort. In particular, the Mikea Forest, a unique area between the Mangoky and Fiherenana rivers, currently receives negligible formal protection. It contains remarkably diverse plant and reptile assemblages, including several taxa that are found nowhere else, plus the only populations of two threatened bird species: the subdesert mesite Monias benschi and long-tailed ground-roller Uratelornis chimaera. From satellite imagery we estimate that primary forest cover declined by 15.6 per cent from 1962 to 1999, and that the rate of deforestation has increased from 0.35 per cent per annum in 1962–94 to 0.93 per cent per annum over the past 5 years. The most important factors underlying this process are slash-and-burn maize cultivation in the northern Mikea Forest and charcoal production at its southern fringe. Given these alarming circumstances, we suggest that combinations of conservation measures are required to safeguard the biological diversity of the area. Specifically, we recommend the establishment of a large protected area to the north of Manombo, a co-ordinated network of community-based conservation areas throughout the Mikea Forest, development projects to improve agriculture, and a regional research and education centre.


2018 ◽  
Vol 14 (10) ◽  
pp. 1543-1563 ◽  
Author(s):  
Alice Callegaro ◽  
Dario Battistel ◽  
Natalie M. Kehrwald ◽  
Felipe Matsubara Pereira ◽  
Torben Kirchgeorg ◽  
...  

Abstract. The fire history of the Tibetan Plateau over centennial to millennial timescales is not well known. Recent ice core studies reconstruct fire history over the past few decades but do not extend through the Holocene. Lacustrine sedimentary cores, however, can provide continuous records of local environmental change on millennial scales during the Holocene through the accumulation and preservation of specific organic molecular biomarkers. To reconstruct Holocene fire events and vegetation changes occurring on the southeastern Tibetan Plateau and the surrounding areas, we used a multi-proxy approach, investigating multiple biomarkers preserved in core sediment samples retrieved from Paru Co, a small lake located in the Nyainqentanglha Mountains (29∘47′45.6′′ N, 92∘21′07.2′′ E; 4845 m a.s.l.). Biomarkers include n-alkanes as indicators of vegetation, polycyclic aromatic hydrocarbons (PAHs) as combustion proxies, fecal sterols and stanols (FeSts) as indicators of the presence of humans or grazing animals, and finally monosaccharide anhydrides (MAs) as specific markers of vegetation burning processes. Insolation changes and the associated influence on the Indian summer monsoon (ISM) affect the vegetation distribution and fire types recorded in Paru Co throughout the Holocene. The early Holocene (10.7–7.5 cal kyr BP) n-alkane ratios demonstrate oscillations between grass and conifer communities, resulting in respective smouldering fires represented by levoglucosan peaks, and high-temperature fires represented by high-molecular-weight PAHs. Forest cover increases with a strengthened ISM, where coincident high levoglucosan to mannosan (L ∕ M) ratios are consistent with conifer burning. The decrease in the ISM at 4.2 cal kyr BP corresponds with the expansion of regional civilizations, although the lack of human FeSts above the method detection limits excludes local anthropogenic influence on fire and vegetation changes. The late Holocene is characterized by a relatively shallow lake surrounded by grassland, where all biomarkers other than PAHs display only minor variations. The sum of PAHs steadily increases throughout the late Holocene, suggesting a net increase in local to regional combustion that is separate from vegetation and climate change.


1992 ◽  
Vol 38 (1) ◽  
pp. 129-134 ◽  
Author(s):  
H. E. Wright

AbstractThe Holocene pollen sequence in the Minnesota area is “asymmetric” around the so-called prairie period: the early Holocene is dominated by elm (with pine in the north) and the late Holocene by oak. The elm zone is interpreted as a manifestation of summer monsoonal rains enhanced by the Milankovitch insolation maximum, and the pine in the north is interpreted as a result of summer cooling near the retreating ice sheet. As the summer insolation waned during the Holocene, its associated monsoonal rains from the Caribbean moisture source lasted longer in the south (northeastern Iowa and southern Wisconsin), where the inferred mesic elm forest changed to prairie as late as 5000 yr B.P., compared to 8000 yr. B.P. in Minnesota (and 9000 yr B.P. in the Dakotas).


2021 ◽  
Vol 13 (15) ◽  
pp. 2935
Author(s):  
Chunhua Qian ◽  
Hequn Qiang ◽  
Feng Wang ◽  
Mingyang Li

Building a high-precision, stable, and universal automatic extraction model of the rocky desertification information is the premise for exploring the spatiotemporal evolution of rocky desertification. Taking Guizhou province as the research area and based on MODIS and continuous forest inventory data in China, we used a machine learning algorithm to build a rocky desertification model with bedrock exposure rate, temperature difference, humidity, and other characteristic factors and considered improving the model accuracy from the spatial and temporal dimensions. The results showed the following: (1) The supervised classification method was used to build a rocky desertification model, and the logical model, RF model, and SVM model were constructed separately. The accuracies of the models were 73.8%, 78.2%, and 80.6%, respectively, and the kappa coefficients were 0.61, 0.672, and 0.707, respectively. SVM performed the best. (2) Vegetation types and vegetation seasonal phases are closely related to rocky desertification. After combining them, the model accuracy and kappa coefficient improved to 91.1% and 0.861. (3) The spatial distribution characteristics of rocky desertification in Guizhou are obvious, showing a pattern of being heavy in the west, light in the east, heavy in the south, and light in the north. Rocky desertification has continuously increased from 2001 to 2019. In conclusion, combining the vertical spatial structure of vegetation and the differences in seasonal phase is an effective method to improve the modeling accuracy of rocky desertification, and the SVM model has the highest rocky desertification classification accuracy. The research results provide data support for exploring the spatiotemporal evolution pattern of rocky desertification in Guizhou.


2021 ◽  
pp. 1-17
Author(s):  
Laurie D. Grigg ◽  
Kevin J. Engle ◽  
Alison J. Smith ◽  
Bryan N. Shuman ◽  
Maximilian B. Mandl

Abstract A multiproxy record from Twin Ponds, VT, is used to reconstruct climatic variability during the late Pleistocene to early Holocene transition. Pollen, ostracodes, δ18O, and lithologic records from 13.5 to 9.0 cal ka BP are presented. Pollen- and ostracode-inferred climatic reconstructions are based on individual species’ environmental preferences and the modern analog technique. Principal components analysis of all proxies highlights the overall warming trend and centennial-scale climatic variability. During the Younger Dryas cooling event (YD), multiple proxies show evidence for cold winter conditions and increasing seasonality after 12.5 cal ka BP. The early Holocene shows an initial phase of rapid warming with a brief cold interval at 11.5 cal ka BP, followed by a more gradual warming; a cool, wet period from 11.2 to 10.8 cal ka BP; and cool, dry conditions from 10.8 to 10.2 cal ka BP. The record ends with steady warming and increasing moisture. Post-YD climatic variability has been observed at other sites in the northeastern United States and points to continued instability in the North Atlantic during the final phases of deglaciation.


Sign in / Sign up

Export Citation Format

Share Document