scholarly journals Optimization of Rocky Desertification Classification Model Based on Vegetation Type and Seasonal Characteristic

2021 ◽  
Vol 13 (15) ◽  
pp. 2935
Author(s):  
Chunhua Qian ◽  
Hequn Qiang ◽  
Feng Wang ◽  
Mingyang Li

Building a high-precision, stable, and universal automatic extraction model of the rocky desertification information is the premise for exploring the spatiotemporal evolution of rocky desertification. Taking Guizhou province as the research area and based on MODIS and continuous forest inventory data in China, we used a machine learning algorithm to build a rocky desertification model with bedrock exposure rate, temperature difference, humidity, and other characteristic factors and considered improving the model accuracy from the spatial and temporal dimensions. The results showed the following: (1) The supervised classification method was used to build a rocky desertification model, and the logical model, RF model, and SVM model were constructed separately. The accuracies of the models were 73.8%, 78.2%, and 80.6%, respectively, and the kappa coefficients were 0.61, 0.672, and 0.707, respectively. SVM performed the best. (2) Vegetation types and vegetation seasonal phases are closely related to rocky desertification. After combining them, the model accuracy and kappa coefficient improved to 91.1% and 0.861. (3) The spatial distribution characteristics of rocky desertification in Guizhou are obvious, showing a pattern of being heavy in the west, light in the east, heavy in the south, and light in the north. Rocky desertification has continuously increased from 2001 to 2019. In conclusion, combining the vertical spatial structure of vegetation and the differences in seasonal phase is an effective method to improve the modeling accuracy of rocky desertification, and the SVM model has the highest rocky desertification classification accuracy. The research results provide data support for exploring the spatiotemporal evolution pattern of rocky desertification in Guizhou.


Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3995 ◽  
Author(s):  
Ning Liu ◽  
Ruomei Zhao ◽  
Lang Qiao ◽  
Yao Zhang ◽  
Minzan Li ◽  
...  

Potato is the world’s fourth-largest food crop, following rice, wheat, and maize. Unlike other crops, it is a typical root crop with a special growth cycle pattern and underground tubers, which makes it harder to track the progress of potatoes and to provide automated crop management. The classification of growth stages has great significance for right time management in the potato field. This paper aims to study how to classify the growth stage of potato crops accurately on the basis of spectroscopy technology. To develop a classification model that monitors the growth stage of potato crops, the field experiments were conducted at the tillering stage (S1), tuber formation stage (S2), tuber bulking stage (S3), and tuber maturation stage (S4), respectively. After spectral data pre-processing, the dynamic changes in chlorophyll content and spectral response during growth were analyzed. A classification model was then established using the support vector machine (SVM) algorithm based on spectral bands and the wavelet coefficients obtained from the continuous wavelet transform (CWT) of reflectance spectra. The spectral variables, which include sensitive spectral bands and feature wavelet coefficients, were optimized using three selection algorithms to improve the classification performance of the model. The selection algorithms include correlation analysis (CA), the successive projection algorithm (SPA), and the random frog (RF) algorithm. The model results were used to compare the performance of various methods. The CWT-SPA-SVM model exhibited excellent performance. The classification accuracies on the training set (Atrain) and the test set (Atest) were respectively 100% and 97.37%, demonstrating the good classification capability of the model. The difference between the Atrain and accuracy of cross-validation (Acv) was 1%, which showed that the model has good stability. Therefore, the CWT-SPA-SVM model can be used to classify the growth stages of potato crops accurately. This study provides an important support method for the classification of growth stages in the potato field.



2018 ◽  
Vol 612 ◽  
pp. 1141-1148 ◽  
Author(s):  
Min Zhang ◽  
Yuanling Zhang ◽  
Qi Shu ◽  
Chang Zhao ◽  
Gang Wang ◽  
...  


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3117
Author(s):  
Junghwan Kim

Engine knock determination has been conducted in various ways for spark timing calibration. In the present study, a knock classification model was developed using a machine learning algorithm. Wavelet packet decomposition (WPD) and ensemble empirical mode decomposition (EEMD) were employed for the characterization of the in-cylinder pressure signals from the experimental engine. The WPD was used to calculate 255 features from seven decomposition levels. EEMD provided total 70 features from their intrinsic mode functions (IMF). The experimental engine was operated at advanced spark timings to induce knocking under various engine speeds and load conditions. Three knock intensity metrics were employed to determine that the dataset included 4158 knock cycles out of a total of 66,000 cycles. The classification model trained with 66,000 cycles achieved an accuracy of 99.26% accuracy in the knock cycle detection. The neighborhood component analysis revealed that seven features contributed significantly to the classification. The classification model retrained with the seven significant features achieved an accuracy of 99.02%. Although the misclassification rate increased in the normal cycle detection, the feature selection decreased the model size from 253 to 8.25 MB. Finally, the compact classification model achieved an accuracy of 99.95% with the second dataset obtained at the knock borderline (KBL) timings, which validates that the model is sufficient for the KBL timing determination.



2020 ◽  
Vol 11 (1) ◽  
pp. 96
Author(s):  
Wen-Lan Wu ◽  
Meng-Hua Lee ◽  
Hsiu-Tao Hsu ◽  
Wen-Hsien Ho ◽  
Jing-Min Liang

Background: In this study, an automatic scoring system for the functional movement screen (FMS) was developed. Methods: Thirty healthy adults fitted with full-body inertial measurement unit sensors completed six FMS exercises. The system recorded kinematics data, and a professional athletic trainer graded each participant. To reduce the number of input variables for the predictive model, ordinal logistic regression was used for subset feature selection. The ensemble learning algorithm AdaBoost.M1 was used to construct classifiers. Accuracy and F score were used for classification model evaluation. The consistency between automatic and manual scoring was assessed using a weighted kappa statistic. Results: When all the features were used, the predict model presented moderate to high accuracy, with kappa values between fair to very good agreement. After feature selection, model accuracy decreased about 10%, with kappa values between poor to moderate agreement. Conclusions: The results indicate that higher prediction accuracy was achieved using the full feature set compared with using the reduced feature set.



2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Hui Chen ◽  
Zan Lin ◽  
Chao Tan

Near-infrared (NIR) spectroscopy technique offers many potential advantages as tool for biomedical analysis since it enables the subtle biochemical signatures related to pathology to be detected and extracted. In conjunction with advanced chemometrics, NIR spectroscopy opens the possibility of their use in cancer diagnosis. The study focuses on the application of near-infrared (NIR) spectroscopy and classification models for discriminating colorectal cancer. A total of 107 surgical specimens and a corresponding NIR diffuse reflection spectral dataset were prepared. Three preprocessing methods were attempted and least-squares support vector machine (LS-SVM) was used to build a classification model. The hybrid preprocessing of first derivative and principal component analysis (PCA) resulted in the best LS-SVM model with the sensitivity and specificity of 0.96 and 0.96 for the training and 0.94 and 0.96 for test sets, respectively. The similarity performance on both subsets indicated that overfitting did not occur, assuring the robustness and reliability of the developed LS-SVM model. The area of receiver operating characteristic (ROC) curve was 0.99, demonstrating once again the high prediction power of the model. The result confirms the applicability of the combination of NIR spectroscopy, LS-SVM, PCA, and first derivative preprocessing for cancer diagnosis.



2018 ◽  
Vol 7 (2.4) ◽  
pp. 10
Author(s):  
V Mala ◽  
K Meena

Traditional signature based approach fails in detecting advanced malwares like stuxnet, flame, duqu etc. Signature based comparison and correlation are not up to the mark in detecting such attacks. Hence, there is crucial to detect these kinds of attacks as early as possible. In this research, a novel data mining based approach were applied to detect such attacks. The main innovation lies on Misuse signature detection systems based on supervised learning algorithm. In learning phase, labeled examples of network packets systems calls are (gave) provided, on or after which algorithm can learn about the attack which is fast and reliable to known. In order to detect advanced attacks, unsupervised learning methodologies were employed to detect the presence of zero day/ new attacks. The main objective is to review, different intruder detection methods. To study the role of Data Mining techniques used in intruder detection system. Hybrid –classification model is utilized to detect advanced attacks.



Author(s):  
K. Ya. Bulakhova ◽  
S. M. Sudarikov

The results of hydrogeochemical monitoring of the Sarmat-Meotis-Pontic sediments aquifer complex of the North Sivash artesian basin have been analyzed. The analysis based on a routine observations for 16 producing wells. The observations were made in the period from 2014 to 2017 years. A correlation and regression analysis has been made for definition of dependencies between changes in the concentrations of the normalized components. The results obtained allow us to evaluate the main factors of formation of the chemical composition of groundwater. At the present stage, metamorphosed waters are pulled up from the lower strata of the complex, that leads to an increase in the amount of mineralization. The formation of sulphate waters is primarily associated with the peculiarities of the geological structure, namely, the high gypsum content of quaternary deposits and the presence of hydraulic connection with the overlying aquifers. One of the reasons for the formation of sulphate waters is the anthropogenic impact associated with the close location of the acid accumulator containing sulfur tailing. The results obtained allow us to proceed to the next stage of the survey — the creation of a natural hydrogeological model of the research area and the carrying of the thermodynamic modeling.



2021 ◽  
Author(s):  
Cedric Twardzik ◽  
Mathilde Vergnolle ◽  
Anthony Sladen ◽  
Louisa L. H. Tsang

Abstract. It is well-established that the post-seismic slip results from the combined contribution of seismic slip and aseismic slip. However, the partitioning between these two modes of slip remains unclear due to the difficulty to infer detailed and robust descriptions of how both evolve in space and time. This is particularly true just after a mainshock when both processes are expected to be the strongest. Using state-of-the-art sub-daily processing of GNSS data, along with dense catalogs of aftershocks obtained from template-matching techniques, we unravel the spatiotemporal evolution of post-seismic slip and aftershocks over the first 12 hours following the 2015 Mw8.3 Illapel, Chile, earthquake. We show that the very early post-seismic activity occurs over two regions with distinct behaviors. To the north, post-seismic slip appears to be purely aseismic and precedes the occurrence of late aftershocks. To the south, aftershocks are the primary cause of the post-seismic slip. We suggest that this difference in behavior could be inferred only few hours after the mainshock, and thus could contribute to a more data-driven forecasts of long-term aftershocks.



2020 ◽  
Vol 14 (1) ◽  
pp. 41-50 ◽  
Author(s):  
Hai-Bang Ly ◽  
Binh Thai Pham

Background: Shear strength of soil, the magnitude of shear stress that a soil can maintain, is an important factor in geotechnical engineering. Objective: The main objective of this study is dedicated to the development of a machine learning algorithm, namely Support Vector Machine (SVM) to predict the shear strength of soil based on 6 input variables such as clay content, moisture content, specific gravity, void ratio, liquid limit and plastic limit. Methods: An important number of experimental measurements, including more than 500 samples was gathered from the Long Phu 1 power plant project’s technical reports. The accuracy of the proposed SVM was evaluated using statistical indicators such as the coefficient of correlation (R), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) over a number of 200 simulations taking into account the random sampling effect. Finally, the most accurate SVM model was used to interpret the prediction results due to Partial Dependence Plots (PDP). Results: Validation results showed that SVM model performed well for prediction of soil shear strength (R = 0.9 to 0.95), and the moisture content, liquid limit and plastic limit were found as the three most affecting features to the prediction of soil shear strength. Conclusion: This study might help in quick and accurate prediction of soil shear strength for practical purposes in civil engineering.



Sign in / Sign up

Export Citation Format

Share Document