N,N-diethyl-2-[4-(phenylmethyl) phenoxy] ethanamine (DPPE; tesmilifene), a chemopotentiating agent with hormetic effects on DNA synthesis in vitro, may improve survival in patients with metastatic breast cancer

2008 ◽  
Vol 27 (2) ◽  
pp. 143-147 ◽  
Author(s):  
Lorne J Brandes

N,N-diethyl-2-[4-(phenylmethyl) phenoxy] ethanamine (DPPE; tesmilifene) is a novel anti-histaminic and chemopotentiating agent that has a hormetic effect on DNA synthesis in MCF (Michigan Cancer Foundation)-7 human breast cancer cells in vitro and stimulates the growth of experimental tumors in rodents. In a prospectively randomized phase three trial (NCIC MA.19), 152 patients who were co-administered DPPE and doxorubicin survived 50% longer ( P < 0.03) than 153 patients who were administered the same dose and schedule of doxorubicin alone. At clinically relevant in vitro concentrations that do not inhibit the P-glycoprotein (P-gp) pump, DPPE selectively sensitizes the cancer cells that express the multiple drug resistance phenotype, making them more susceptible to the cytotoxic effects of chemotherapeutic agents, including anthracyclines and taxanes. Based on its previously demonstrated interaction with histamine at CYP3A4, a P450 that metabolizes arachidonic acid, and its induction of high levels of prostacyclin in the gut of rodents, modulation by DPPE of the intracellular concentration of arachidonate products, such as hydroxyeicosatetraeinoic acids, implicated in increased cancer cell proliferation and metastasis, is postulated.

Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1366
Author(s):  
Russell Hughes ◽  
Xinyue Chen ◽  
Natasha Cowley ◽  
Penelope D. Ottewell ◽  
Rhoda J. Hawkins ◽  
...  

Metastatic breast cancer in bone is incurable and there is an urgent need to develop new therapeutic approaches to improve survival. Key to this is understanding the mechanisms governing cancer cell survival and growth in bone, which involves interplay between malignant and accessory cell types. Here, we performed a cellular and molecular comparison of the bone microenvironment in mouse models representing either metastatic indolence or growth, to identify mechanisms regulating cancer cell survival and fate. In vivo, we show that regardless of their fate, breast cancer cells in bone occupy niches rich in osteoblastic cells. As the number of osteoblasts in bone declines, so does the ability to sustain large numbers of breast cancer cells and support metastatic outgrowth. In vitro, osteoblasts protected breast cancer cells from death induced by cell stress and signaling via gap junctions was found to provide important juxtacrine protective mechanisms between osteoblasts and both MDA-MB-231 (TNBC) and MCF7 (ER+) breast cancer cells. Combined with mathematical modelling, these findings indicate that the fate of DTCs is not controlled through the association with specific vessel subtypes. Instead, numbers of osteoblasts dictate availability of protective niches which breast cancer cells can colonize prior to stimulation of metastatic outgrowth.


2020 ◽  
Vol 107 ◽  
pp. 65-77 ◽  
Author(s):  
Akshay A. Narkhede ◽  
James H. Crenshaw ◽  
David K. Crossman ◽  
Lalita A. Shevde ◽  
Shreyas S. Rao

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Changhu Lee ◽  
Hyung Won Ryu ◽  
Sahee Kim ◽  
Min Kim ◽  
Sei-Ryang Oh ◽  
...  

AbstractBreast cancer is one of the most common cancers in women and is associated with a high mortality rate. The majority of deaths resulting from breast cancer are attributable to metastatic growth; in addition, chemoresistance is a major concern in the treatment of patients with breast cancer. However, limited drugs are available for the treatment of metastatic breast cancer. In this study, the chemoadjuvant effects of a methanolic extract from the leaves of Pseudolysimachion rotundum var. subintegrum (NC13) and an active component isolated from the plant, verminoside (Vms), were evaluated. Furthermore, their potent anti-metastatic activities were validated in vitro and in vivo in animal models. The anti-metastatic and chemosensitizing activities of NC13 and Vms on cisplatin treatment were found to be partly mediated by suppression of the epithelial–mesenchymal transition of cancer cells. Collectively, our results implied that NC13 and its bioactive component Vms could be developed as effective chemoadjuvants in combination with conventional therapeutics.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Thandi Mqoco ◽  
André Stander ◽  
Anna-Mart Engelbrecht ◽  
Anna M Joubert

Current chemotherapeutic agents have many side effects and are toxic to normal cells, providing impetus to identify agents that can effectively eliminate tumorigenic cells without damaging healthy cells. The aim of this study was to examine whether combining a novel BRD4 inhibitor, ITH-47, with the antimitotic estradiol analogue, ESE-15-ol, would have a synergistic effect on inhibiting the growth of two different breast cancer cell lines in vitro. Our docking and molecular dynamics studies showed that compared to JQ1, ITH-47 showed a similar binding mode with hydrogen bonds forming between the ligand nitrogens of the pyrazole, ASN99, and water of the BRD4 protein. Data from cell growth studies revealed that the GI50 of ITH-47 and ESE-15-ol after 48 hours of exposure was determined to be 15 μM and 70 nM, respectively, in metastatic MDA-MB-231 breast cancer cells. In tumorigenic MCF-7 breast cancer cells, the GI50 of ITH-47 and ESE-15-ol was 75 μM and 60 nM, respectively, after 48 hours of exposure. Furthermore, the combination of 7.5 μM and 14 nM of ITH-47 and ESE-15-ol, respectively, resulted in 50% growth inhibition of MDA-MB-231 cells resulting in a synergistic combination index (CI) of 0.7. Flow cytometry studies revealed that, compared to the control, combination-treated MDA-MB-231 cells had significantly more cells present in the sub-G1 phase and the combination treatment induced apoptosis in the MDA-MB-231 cells. Compared to vehicle-treated cells, the combination-treated cells showed decreased levels of the BRD4, as well as c-Myc protein after 48 hours of exposure. In combination, the selective BRD4 inhibitor, ITH-47, and ESE-15-ol synergistically inhibited the growth of MDA-MB-231 breast cancer cells, but not of the MCF-7 cell line. This study provides evidence that resistance to BRD4 inhibitors may be overcome by combining inhibitors with other compounds, which may have treatment potential for hormone-independent breast cancers.


2014 ◽  
Vol 68 (4) ◽  
pp. 477-482 ◽  
Author(s):  
Engin Ulukaya ◽  
Mehmet Sarimahmut ◽  
Buse Cevatemre ◽  
Ferda Ari ◽  
Azmi Yerlikaya ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Yunhe Lu ◽  
Lei Chen ◽  
Liangdong Li ◽  
Yiqun Cao

Brain metastasis is a major cause of death in breast cancer patients. The greatest event for brain metastasis is the breaching of the blood-brain barrier (BBB) by cancer cells. The role of exosomes in cancer metastasis is clear, whereas the role of exosomes in the integrity of the BBB is unknown. Here, we established a highly brain metastatic breast cancer cell line by three cycles of in vivo selection. The effect of exosomes on the BBB was evaluated in vitro by tracking, transepithelial/transendothelial electrical resistance (TEER), and permeability assays. BBB-associated exosomal long noncoding RNA (lncRNA) was selected from the GEO dataset and verified by real-time PCR, TEER, permeability, and Transwell assays. The cells obtained by the in vivo selection showed higher brain metastatic capacity in vivo and higher migration and invasion in vitro compared to the parental cells. Exosomes from the highly brain metastatic cells were internalized by brain microvascular endothelial cells (BMECs), which reduced TEER and increased permeability of BBB. The exosomes derived from the highly metastatic cells promoted invasion of the breast cancer cells in the BBB model. lncRNA GS1-600G8.5 was highly expressed in the highly brain metastatic cells and their exosomes, as compared to the samples with reduced metastatic behavior. Silencing of GS1-600G8.5 significantly abrogated the BBB destructive effect of exosomes. GS1-600G8.5-deficient exosomes failed to promote the infiltration of cancer cells through the BBB. Furthermore, BMECs treated with GS1-600G8.5-deprived exosomes expressed higher tight junction proteins than those treated with the control exosomes. These data suggest the exosomes derived from highly brain metastatic breast cancer cells might destroy the BBB system and promote the passage of cancer cells across the BBB, by transferring lncRNA GS1-600G8.5.


Dose-Response ◽  
2020 ◽  
Vol 18 (4) ◽  
pp. 155932582093975
Author(s):  
Bing Han ◽  
Kai Wang ◽  
Yanbei Tu ◽  
Lihua Tan ◽  
Chengwei He

Berberine (BBR), a major active component of Rhizoma coptidis, is one of the most promising agents for breast cancer adjuvant therapy. It is well accepted that BBR could exhibit remarkable anticancer efficacy with few side effects, and when treated with chemotherapeutic agents in combination, BBR could enhance the chemosensitivity of cancer cells. Our previous study reported that low-dose BBR (LDB) induced hormetic effect and attenuated the anticancer activity of chemotherapeutic agents. However, the underlying mechanisms are still unclear. In this study, we confirmed that LDB could promote cancer cell proliferation and antagonize the anti-breast cancer activities of chemotherapeutic agents. And the mechanisms were proved to be induction of autophagy and antioxidation by LDB. Our results showed that LDB could mildly induce reactive oxygen species, raise the level of autophagy by promoting the phosphorylation of adenosine monophosphate-activated protein kinase, and promote antioxidant enzymes expression through activating nuclear factor erythroid 2-related factor 2 in breast cancer cells. These findings revealed a potential negative impact of BBR on its adjuvant anti-breast cancer therapy, providing guidance for a safe and effective use of naturally originated medicines in the clinic.


2019 ◽  
Vol 2 (2) ◽  
pp. 31-35
Author(s):  
Rosidah Rosidah ◽  
Poppy Anjelisa Zaitun Hasibuan ◽  
Ginda Haro ◽  
Denny Satria

Breast cancer is one of the world's leading cause of death in women. Due to the resistance of chemotherapeutic agents, there is a continuous need to search of natural products with anticancer activity.  The use of natural products  is expected to increase the effectiveness  and decrease side effect. The purpose of this study was to investigate the anticancer activity of ethanol extract of andaliman fruits (EEAF) towards 4T1 cells. Extracts were prepared by maceration using solvent ethanol 96%. 4T1 cells were grown in culture medium DMEM then given by EEAF and doxorubicin. Cytotoxic test in vitro was done by MTT method [3-(4,5-dimetiltiazol-2-il) -2.5 difeniltetrazolium bromide] which is then analyzed using SPSS 21. The results from this study showed that the cytotoxic results (IC50) after treatment with EEAF and doxorubicin were 54.48 ± 0.22 µg/mL dan 0.80 ± 0.02 µg/mL.Based on the result above, we conclude that EEAF has cytotoxic activity towards 4T1 cancer cells. Key words: andaliman fruits, Zanthoxylum acanthopodium DC., ethanol extract, breast cancer, 4T1 cell line.


Sign in / Sign up

Export Citation Format

Share Document