Role of heme modulation in inhibition of Atheris, Atractaspis, Causus, Cerastes, Echis, and Macrovipera hemotoxic venom activity

2018 ◽  
Vol 38 (2) ◽  
pp. 216-226 ◽  
Author(s):  
VG Nielsen ◽  
N Frank

Venomous snake bite and subsequent coagulopathy is a significant source of morbidity and mortality worldwide. The gold standard to treat coagulopathy caused by these venoms is the administration of antivenom; however, despite this therapy, coagulopathy still occurs and recurs. Of interest, our laboratory has demonstrated in vitro and in vivo that coagulopathy-inducing venom exposed to carbon monoxide (CO) is inhibited, potentially by an attached heme. The present investigation sought to determine if venoms derived from snakes of the African genera Atheris, Atractaspis, Causus, Cerastes, Echis, and Macrovipera that have no or limited antivenoms available could be inhibited with CO or with the metheme-inducing agent, O-phenylhydroxylamine (PHA). Assessing changes in coagulation kinetics of human plasma with thrombelastography, venoms were exposed in isolation to CO or PHA. Eight species were found to have procoagulant activity consistent with the generation of human thrombin, while one was likely fibrinogenolytic. All venoms were significantly inhibited by CO/PHA with species-specific variation noted. These data demonstrate indirectly that the heme is likely bound to these disparate venoms as an intermediary modulatory molecule. In conclusion, future investigation is warranted to determine if heme could serve as a potential therapeutic target to be modulated during treatment of envenomation by hemotoxic enzymes.

2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Lan Jin ◽  
Yunhe Chen ◽  
Dan Cheng ◽  
Zhikai He ◽  
Xinyi Shi ◽  
...  

AbstractColorectal cancer (CRC) is one of the most aggressive and lethal cancers. The role of autophagy in the pathobiology of CRC is intricate, with opposing functions manifested in different cellular contexts. The Yes-associated protein (YAP), a transcriptional coactivator inactivated by the Hippo tumor-suppressor pathway, functions as an oncoprotein in a variety of cancers. In this study, we found that YAP could negatively regulate autophagy in CRC cells, and consequently, promote tumor progression of CRC in vitro and in vivo. Mechanistically, YAP interacts with TEAD forming a complex to upregulate the transcription of the apoptosis-inhibitory protein Bcl-2, which may subsequently facilitate cell survival by suppressing autophagy-related cell death; silencing Bcl-2 expression could alleviate YAP-induced autophagy inhibition without affecting YAP expression. Collectively, our data provide evidence for YAP/Bcl-2 as a potential therapeutic target for drug exploration against CRC.


Cancers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 587 ◽  
Author(s):  
Matilda Munksgaard Thorén ◽  
Katarzyna Chmielarska Masoumi ◽  
Cecilia Krona ◽  
Xiaoli Huang ◽  
Soumi Kundu ◽  
...  

New, effective treatment strategies for glioblastomas (GBMs), the most malignant and invasive brain tumors in adults, are highly needed. In this study, we investigated the potential of integrin α10β1 as a therapeutic target in GBMs. Expression levels and the role of integrin α10β1 were studied in patient-derived GBM tissues and cell lines. The effect of an antibody–drug conjugate (ADC), an integrin α10 antibody conjugated to saporin, on GBM cells and in a xenograft mouse model was studied. We found that integrin α10β1 was strongly expressed in both GBM tissues and cells, whereas morphologically unaffected brain tissues showed only minor expression. Partial or no overlap was seen with integrins α3, α6, and α7, known to be expressed in GBM. Further analysis of a subpopulation of GBM cells selected for high integrin α10 expression demonstrated increased proliferation and sphere formation. Additionally, siRNA-mediated knockdown of integrin α10 in GBM cells led to decreased migration and increased cell death. Furthermore, the ADC reduced viability and sphere formation of GBM cells and induced cell death both in vitro and in vivo. Our results demonstrate that integrin α10β1 has a functional role in GBM cells and is a novel, potential therapeutic target for the treatment of GBM.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jie Wang ◽  
Changjiang Lei ◽  
Pingping Shi ◽  
Huaixiang Teng ◽  
Lixiang Lu ◽  
...  

Dysregulation of long noncoding RNA (lncRNA) is implicated in the initiation and progression of various tumors, including endometrial cancer (EC). However, the mechanism of lncRNAs in EC tumorigenesis and progression remains largely unexplored. In this work, we identified a novel lncRNA DC-STAMP domain-containing 1-antisense 1 (DCST1-AS1), which is highly upregulated and correlated with poor survival in EC patients. Overexpression of DCST1-AS1 significantly enhanced EC cell proliferation, colony formation, migration, and invasion in vitro and promoted tumor growth of EC in vivo. Mechanistically, DCST1-AS1 mediated EC progression by inducing the expression of homeobox B5 (HOXB5) and cell adhesion molecule 1 (CADM1), via acting as a competing endogenous RNA for microRNA-665 (miR-665) and microRNA-873-5p (miR-873-5p), respectively. In addition, we found that the expression of miR-665 and miR-873-5p was significantly downregulated, while HOXB5 and CADM1 expression levels were increased in EC tissues. Taken together, our findings support the important role of DCST1-AS1 in EC progression, and DCST1-AS1 may be used as a prognostic biomarker as well as a potential therapeutic target for EC.


Author(s):  
Ezra Kombo Osoro ◽  
Xiaojuan Du ◽  
Dong Liang ◽  
Xi Lan ◽  
Riaz Farooq ◽  
...  

The precise molecular mechanism of autophagy dysfunction in type 1 diabetes is not known. Herein, the role of programmed cell death 4 (PDCD4) in autophagy regulation in the pathogenesis of diabetic kidney disease (DKD) in vivo and in vitro was described. It was found that Pdcd4 mRNA and protein was upregulated in the streptozotocin (STZ)-induced DKD rats. In addition, a unilateral ureteral obstruction mouse model displayed an upregulation of PDCD4 in the disease group. kidney biopsy samples of human DKD patients showed an upregulation of PDCD4. Furthermore, western blotting of the STZ-induced DKD rat tissues displayed a low microtubule-associated protein 1A/1B-light chain 3 (LC3)-II, as compared to the control. It was found that albumin overload in cultured PTEC could upregulate the expression of PDCD4 and p62, and decrease the expression of LC3-II and autophagy-related 5 (Atg5) proteins. The knockout of Pdcd4 in cultured PTECs could lessen albumin-induced dysfunctional autophagy as evidenced by the recovery of Atg5 and LC3-II protein. The forced expression of PDCD4 could further suppress the expression of crucial autophagy-related gene Atg5. Herein, endogenous PDCD4 was shown to promote proteinuria-induced dysfunctional autophagy by negatively regulating Atg5. PDCD4 might therefore be a potential therapeutic target in DKD.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1362-1362 ◽  
Author(s):  
Sylvia Takacova ◽  
Pavla Luzna ◽  
Viktor Stranecky ◽  
Vladimir Divoky

Abstract Abstract 1362 During the multistep pathogenesis of acute leukemia (AL), a pool of leukemia stem cells (LSCs) emerges that is capable of limitless self-renewal and ensuring disease maintenance. The molecular mechanism that controls the kinetics of cellular transformation and development of LSCs is largely unknown. Using our MLL-ENL-ERtm mouse model, we have previously shown (Takacova et al., Blood 2009, 114 (22): 947–947, ASH abstract) activation of the ATR/ATM-Chk1/Chk2-p53/p21 checkpoint leading to senescence at early stages of cellular transformation (myeloproliferation), thereby preventing AL development in vivo. Experimental ATM/ATR inhibition accelerated the transition to immature cell states, acquisition of LSC properties and AL development in these mice. The MLL-ENL-ERtm mouse model allows us to study the kinetics of MLL-ENL-ERtm LSC development. We raised the questions how the transformation process progresses from the pre-LSC to the LSC state, and how DNA damage response (DDR) - mediated senescence affects the transition in gene expression. Given that the threshold of DDR signaling events is rate-limiting, we determined the transcription profile of the pre- LSC–enriched cell states derived from bone marrow and spleen of the MLL-ENL-ERtm mice at the early disease stage, and we correlated this transcription profile with the level of DDR, proliferation rate and induction of senescence. Pair-wise comparisons revealed up-regulation of the Six1 transcription factor gene and its cofactor Eya1 in the MLL-ENL-ERtm pre-LSCs in association with aberrant proliferation in both tissues. The notable difference between the two tissues concerning the barrier induction was the higher threshold of DDR and senescence in the bone marrow due to cooperation with inflammatory cytokines that fine-tune the DDR level. Interestingly, the expression of Six1 and Eya1 genes was down-regulated in senescence exclusively in the bone marrow. Consistent with these in vivo data, we found Six1 expression decreased in response to inflammation/DDR-induced senescence in the MLL-ENL-ERtm bone marrow cells cultured in vitro and correlated with SA-beta-gal positivity and p16 up-regulation. Six1 mRNA level was decreased only transiently after ionizing radiation (4 Gy)-induced DDR in the same cell line. These data suggest that Six1 expression is down-regulated in response to high DDR and permanent cell-cycle arrest in the MLL-ENL-ERtm pre-LSCs. Furthermore, we identified the transcription profile of the LSC-enriched cell state after inhibition of DDR in caffeine-treated MLL-ENL-ERtm mice in vivo. Interestingly, the expression level of Six1 and Eya1 was significantly increased in the bone marrow and spleen of the MLL-ENL-ERtm AML mice compared to the early (preleukemia) stage. High expression of Six1 and Eya1 and higher cell number expressing these genes was further confirmed by immunohistochemical staining on tissue sections. The MLL-ENL-ERtm LSC-enriched spleen cells showed increased colony forming ability in vitro and leukemia-initiating potential in serial transplantation experiments compared to pre-LSCs. Moreover, we detected Six1 and Eya1 expression in the infiltrating leukemia cells in tissues of the caffeine-treated MLL-ENL-ERtm AML mice and in a subset of leukemia cells in transplanted mice. Based on these findings and correlations, we hypothesized that the Six1/Eya1 pathway might be involved in regulation of some of the aspects of LSC development as well as invasion and maintenance of leukemia in our MLL-ENL-ERtm mice. Notably, our data indicate that senescence represses a subset of the MLL-ENL-downstream transcription response and prevents full activation of self-renewal. Experiments leading to more detailed understanding of the role of the Six1/Eya1 pathway in the MLL-ENL-induced cellular transformation are ongoing. Disclosures: No relevant conflicts of interest to declare.


Author(s):  
Ping Zhao ◽  
Hai-Tao Guan ◽  
Zhi-Jun Dai ◽  
Yu-Guang Ma ◽  
Xiao-Xu Liu ◽  
...  

Sparc/osteonectin, cwcv, and kazal-like domains proteoglycan (testican) 1 (SPOCK1), known as testican-1, were found to be involved in the development and progression of tumors. However, in colorectal cancer (CRC), the expression pattern of SPOCK1 and its functional role remain poorly investigated. In the present study, we explored the role of SPOCK1 in CRC. Our results demonstrated that SPOCK1 is overexpressed in CRC cell lines. SPOCK1 silencing significantly inhibited the proliferation in vitro and the tumor growth in vivo. Furthermore, SPOCK1 silencing significantly attenuated the migration/invasion by reversing the EMT process in CRC cells. Finally, knockdown of SPOCK1 obviously decreased the protein expression levels of p-PI3K and p-Akt in HCT116 cells. In total, our study demonstrated for the first time that knockdown of SPOCK1 inhibits the proliferation and invasion in CRC cells, possibly through the PI3K/Akt signaling pathway. Therefore, SPOCK1 may be a potential therapeutic target for the treatment of CRC.


2021 ◽  
Vol 12 (3) ◽  
Author(s):  
Haoyu Li ◽  
Qing Liu ◽  
Zihua Chen ◽  
Ming Wu ◽  
Chao Zhang ◽  
...  

AbstractTemozolomide (TMZ) is the internationally recognized and preferred drug for glioma chemotherapy treatment. However, TMZ resistance in glioma appears after long-term use and is an urgent problem that needs to be solved. Circular RNAs (circRNAs) are noncoding RNAs and play an important role in the pathogenesis and progression of tumors. Hsa_circ_0110757 was identified in TMZ-resistant glioma cells by high-throughput sequencing analysis and was derived from reverse splicing of myeloid cell leukemia-1 (Mcl-1) exons. The role of hsa_circ_0110757 in TMZ-resistant glioma was evaluated both in vitro and in vivo. It was found that hsa_circ_0110757 and ITGA1 are more highly expressed in TMZ-resistant glioma than in TMZ-sensitive glioma. The overexpression of hsa_circ_0110757 in glioma patients treated with TMZ was obviously associated with tumor invasion. This study indicates that hsa_circ_0110757 inhibits glioma cell apoptosis by sponging hsa-miR-1298-5p to promote ITGA1 expression. Thus, hsa_circ_0110757/hsa-miR-1298-5p/ITGA could be a potential therapeutic target for reversing the resistance of glioma to TMZ.


2021 ◽  
Vol 65 (1) ◽  
Author(s):  
Chuanchao Wei ◽  
Jiayue Wu ◽  
Weiyan Liu ◽  
Jingfeng Lu ◽  
Hongchang Li ◽  
...  

Proteins in the tripartite motif-containing protein (TRIM) family participates in carcinogenesis. However, little attention was focused on the role of TRIM6 on development of breast cancer. Expression level of TRIM6 was found to be markedly enhanced in breast cancer cells and tissues. Functional assays demonstrated that overexpression of TRIM6 promoted breast cancer progression through increase of YAP1 (Yes-associated Protein 1), while knockdown of TRIM6 suppressed in vitro breast cancer progression and in vivo tumor growth through decrease of YAP1. Co-Immunoprecipitation (co-IP) showed that TRIM6 interacted with STUB1 (stress induced phosphoprotein 1 homology and U-box containing protein 1). TRIM6 promoted ubiquitination-mediated degradation of STUB1 to promote YAP1 signaling. Overexpression of STUB1 attenuated TRIM6-induced promotion of breast cancer growth. In conclusion, TRIM6 contributed to breast cancer progression through ubiquitination-dependent proteasomal degradation of STUB1 and provocation of YAP1 pathway, providing potential therapeutic target for breast cancer.


Parasitology ◽  
2007 ◽  
Vol 134 (9) ◽  
pp. 1253-1262 ◽  
Author(s):  
S. BRUNET ◽  
J. AUFRERE ◽  
F. El BABILI ◽  
I. FOURASTE ◽  
H. HOSTE

SUMMARYThe mode of action of bioactive plants on gastrointestinal nematodes remains obscure. Previous in vitro studies showed that exsheathment was significantly disturbed after contact with tannin-rich extracts. However, the role of important factors (extract concentration, parasite species) has not been assessed and no information is available on the occurrence in vivo. These questions represent the objectives of this study. The model incorporated the parasites Haemonchus contortus and Trichostrongylus colubriformis with sainfoin as the bioactive plant. A set of in vitro assays was performed, measuring the changes observed, after 3 h of contact with increasing concentrations of sainfoin, on the rate of artificial exsheathment. The results indicated that sainfoin extracts interfered with exsheathment in a dose-dependent manner and the process overall was similar for both nematodes. The restoration of control values observed after adding PEG to extracts confirms a major role for tannins. A second study was performed in vivo on rumen-cannulated sheep fed with different proportions of sainfoin in the diet to verify these in vitro results. The consumption of a higher proportion of sainfoin was indeed associated with significant delays in Haemonchus exsheathment. Overall, the results confirmed that interference with the early step of nematode infection might be one of the modes of action that contributes to the anthelmintic properties of tanniniferous plants.


2018 ◽  
Author(s):  
Jing Liu ◽  
Laura Francis ◽  
Peter Chien

SummaryDnaA initiates chromosome replication in bacteria. In Caulobacter crescentus, the Lon protease degrades DnaA to coordinate replication with nutrient availability and to halt the cell cycle during acute stress. Here we characterize the mechanism of DnaA recognition by Lon. We find that the native folded state of DnaA is crucial for its degradation, in contrast to the well-known role of Lon in degrading misfolded proteins. We fail to identify a single degradation motif (degron) sufficient for DnaA degradation, rather we show that both the ATPase domain and a species-specific N-terminal motif are important for productive Lon degradation of DnaA. Mutations in either of these determinants disrupt DnaA degradation in vitro and in vivo. DnaA switches from an inactive to active state depending on its nucleotide state and we find that locking DnaA in an active state inhibits degradation. Our working model is that Lon engages DnaA through at least two elements, one of which anchors DnaA to Lon and the other acting as an initiation site for degradation.


Sign in / Sign up

Export Citation Format

Share Document