scholarly journals LncRNA DCST1-AS1 Promotes Endometrial Cancer Progression by Modulating the MiR-665/HOXB5 and MiR-873-5p/CADM1 Pathways

2021 ◽  
Vol 11 ◽  
Author(s):  
Jie Wang ◽  
Changjiang Lei ◽  
Pingping Shi ◽  
Huaixiang Teng ◽  
Lixiang Lu ◽  
...  

Dysregulation of long noncoding RNA (lncRNA) is implicated in the initiation and progression of various tumors, including endometrial cancer (EC). However, the mechanism of lncRNAs in EC tumorigenesis and progression remains largely unexplored. In this work, we identified a novel lncRNA DC-STAMP domain-containing 1-antisense 1 (DCST1-AS1), which is highly upregulated and correlated with poor survival in EC patients. Overexpression of DCST1-AS1 significantly enhanced EC cell proliferation, colony formation, migration, and invasion in vitro and promoted tumor growth of EC in vivo. Mechanistically, DCST1-AS1 mediated EC progression by inducing the expression of homeobox B5 (HOXB5) and cell adhesion molecule 1 (CADM1), via acting as a competing endogenous RNA for microRNA-665 (miR-665) and microRNA-873-5p (miR-873-5p), respectively. In addition, we found that the expression of miR-665 and miR-873-5p was significantly downregulated, while HOXB5 and CADM1 expression levels were increased in EC tissues. Taken together, our findings support the important role of DCST1-AS1 in EC progression, and DCST1-AS1 may be used as a prognostic biomarker as well as a potential therapeutic target for EC.

Author(s):  
Jie Zhang ◽  
Xiao-Yan Li ◽  
Ping Hu ◽  
Yuan-Sheng Ding

Previous study indicates that long noncoding RNA NORAD could serve as a competing endogenous RNA to pancreatic cancer metastasis. However, its role in colorectal cancer (CRC) needs to be investigated. In the present study, we found that the expression of NORAD was significantly upregulated in CRC tissues. Furthermore, the expression of NORAD was positively related with CRC metastasis and patients’ poor prognosis. Knockdown of NORAD markedly inhibited CRC cell proliferation, migration, and invasion but induced cell apoptosis in vitro. In vivo experiments also indicated an inhibitory effect of NORAD on tumor growth. Mechanistically, we found that NORAD served as a competing endogenous RNA for miR-202-5p. We found that there was an inverse relationship between the expression of NORAD and miR-202-5p in CRC tissues. Moreover, overexpression of miR-202-5p in SW480 and HCT116 cells significantly inhibited cellular proliferation, migration, and invasion. Taken together, our study demonstrated that the NORAD/miR-202-5p axis plays a pivotal function on CRC progression.


2020 ◽  
Author(s):  
Hui Guo ◽  
Jianping Zou ◽  
Ling Zhou ◽  
Yan He ◽  
Miao Feng ◽  
...  

Abstract Background:Nucleolar and spindle associated protein (NUSAP1) is involved in tumor initiation, progression and metastasis. However, there are limited studies regarding the role of NUSAP1 in gastric cancer (GC). Methods: The expression profile and clinical significance of NUSAP1 in GC were analysed in online database using GEPIA, Oncomine and KM plotter, which was further confirmed in clinical specimens.The functional role of NUSAP1 were detected utilizing in vitro and in vivo assays. Western blotting, qRT-PCR, the cycloheximide-chase, immunofluorescence staining and Co-immunoprecipitaion (Co-IP) assays were performed to explore the possible molecular mechanism by which NUSAP1 stabilizes YAP protein. Results:In this study, we found that the expression of NUSAP1 was upregulated in GC tissues and correlates closely with progression and prognosis. Additionally, abnormal NUSAP1 expression promoted malignant behaviors of GC cells in vitro and in a xenograft model. Mechanistically, we discovered that NUSAP1 physically interacts with YAP and furthermore stabilizes YAP protein expression, which induces the transcription of Hippo pathway downstream target genes. Furthermore, the effects of NUSAP1 on GC cell growth, migration and invasion were mainly mediated by YAP. Conclusions:Our data demonstrates that the novel NUSAP1-YAP axis exerts an critical role in GC tumorigenesis and progression, and therefore could provide a novel therapeutic target for GC treatment.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Qun Dai ◽  
Jingyi Deng ◽  
Jinrong Zhou ◽  
Zhuhong Wang ◽  
Xiao-feng Yuan ◽  
...  

Abstract Background Accumulating evidence indicates that the long noncoding RNA taurine upregulated gene 1(TUG1) plays a critical role in cancer progression and metastasis. However, the overall biological role and clinical significance of TUG1 in hepatocellular carcinoma (HCC) remain largely unknown. Methods The expressions of TUG1, microRNA-216b-5p and distal-less homeobox 2 (DLX2) were detected by Quantitative real-time polymerase chain reaction (qRT-PCR). The target relationships were predicted by StarBase v.2.0 or TargetScan and confirmed by dual-luciferase reporter assay. The cell growth, apoptosis, migration and invasion were detected by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Flow cytometry and Transwell assays, respectively. All protein expression levels were detected by western blot. Tumor xenografts were implemented to explore the role of TUG1 in vivo. Results We found that there was a marked rise in TUG1 expression in HCC tissues and cells, and knockdown of TUG1 repressed the growth and metastasis and promoted apoptosis of HCC cells. In particular, TUG1 could act as a ceRNA, effectively becoming a sink for miR-216b-5p to fortify the expression of DLX2. Additionally, repression of TUG1 impared the progression of HCC cells by inhibiting DLX2 expression via sponging miR-216b-5p in vitro. More importantly, TUG1 knockdown inhibited HCC tumor growth in vivo through upregulating miR-216b-5p via inactivation of the DLX2. Conclusion TUG1 interacting with miR-216b-5p contributed to proliferation, metastasis, tumorigenesis and retarded apoptosis by activation of DLX2 in HCC.


Author(s):  
Xinyang Lu ◽  
Zhiqiang Liu ◽  
Xiaofei Ning ◽  
Lunhua Huang ◽  
Biao Jiang

The long noncoding RNA HOX transcript antisense RNA (HOTAIR) has been found to be overexpressed in many human malignancies and involved in tumor progression and metastasis. Although the downstream target through which HOTAIR modulates tumor metastasis is not well known, evidence suggests that microRNA-197 (miR-197) might be involved in this event. In the present study, the significance of HOTAIR and miR-197 in the progression of colorectal cancer was detected in vitro and in vivo. We found that HOTAIR expression was significantly increased in colorectal cancer cells and tissues. In contrast, the expression of miR-197 was obviously decreased. We further demonstrated that HOTAIR knockdown promoted apoptosis and inhibited cell proliferation, migration, and invasion in vitro and in vivo. Moreover, HOTAIR modulated the progression of colorectal cancer by competitively binding miR-197. Taken together, our study has identified a novel pathway through which HOTAIR exerts its oncogenic role and provided a molecular basis for potential applications of HOTAIR in the prognosis and treatment of colorectal cancer.


2021 ◽  
Vol 65 (1) ◽  
Author(s):  
Chuanchao Wei ◽  
Jiayue Wu ◽  
Weiyan Liu ◽  
Jingfeng Lu ◽  
Hongchang Li ◽  
...  

Proteins in the tripartite motif-containing protein (TRIM) family participates in carcinogenesis. However, little attention was focused on the role of TRIM6 on development of breast cancer. Expression level of TRIM6 was found to be markedly enhanced in breast cancer cells and tissues. Functional assays demonstrated that overexpression of TRIM6 promoted breast cancer progression through increase of YAP1 (Yes-associated Protein 1), while knockdown of TRIM6 suppressed in vitro breast cancer progression and in vivo tumor growth through decrease of YAP1. Co-Immunoprecipitation (co-IP) showed that TRIM6 interacted with STUB1 (stress induced phosphoprotein 1 homology and U-box containing protein 1). TRIM6 promoted ubiquitination-mediated degradation of STUB1 to promote YAP1 signaling. Overexpression of STUB1 attenuated TRIM6-induced promotion of breast cancer growth. In conclusion, TRIM6 contributed to breast cancer progression through ubiquitination-dependent proteasomal degradation of STUB1 and provocation of YAP1 pathway, providing potential therapeutic target for breast cancer.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Anbang Wang ◽  
Aimin Jiang ◽  
Xinxin Gan ◽  
Zheng Wang ◽  
Jinming Huang ◽  
...  

Long noncoding RNAs play an essential role in bladder cancer progression. The role of long noncoding RNA EGFR-AS1 in bladder cancer needs further study. We used clinical specimens to analyze the relationship between EGFR-AS1 and bladder cancer patients’ characteristics. The functional experiments and mechanism studies were performed using qRT-PCR, transwell assay, survival analysis, and correlation analysis. We found that high expression of EGFR-AS1 was nearly related to aggressive bladder cancer and indicated poor prognosis for patients. The functional experiments in vivo and in vitro suggested that EGFR-AS1 promoted the proliferation and invasion of bladder cancer cells. Mechanically, EGFR-AS1 promoted the expression of EGFR by inhibiting the degradation of EGFR mRNA, thereby promoting the metastasis of bladder cancer. In addition, EGFR-AS1/EGFR may be involved in the immune-related pathways of bladder cancer. These studies indicate that the EGFR-AS1/EGFR pathway may be a potential diagnostic marker and therapeutic target for bladder cancer.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Juan Hu ◽  
Xing Peng ◽  
Weina Du ◽  
Yichuan Huang ◽  
Chun Zhang ◽  
...  

Background. As a new kind of noncoding RNAs, circular RNAs (circRNAs) have been substantiated to be involved in multiple biological processes. Accumulating studies indicate that circular RNAs (circRNAs) regulate the development of cancers by acting as miRNA sponges. However, the role of circRNAs in endometrial cancer (EC) is rarely reported. This study was aimed at investigating the functional roles of circSLC6A6 in EC. Methods. The qRT-PCR assay was performed to detect the circSLC6A6 expression in EC tissues and cell lines. The luciferase reporter assay was performed to explore the connection between circSLC6A6 and miR-497-5p as well as the connection between miR-497-5p and PI4KB. The colony formation assay, EdU assay, wound healing assay, and transwell assay were performed to examine the proliferation, migration, and invasion of EC cells. The in vivo assay was performed to reveal the function of circSLC6A6 in tumorigenesis. Results. We found that circSLC6A6 was highly expressed in both EC tissues and cells. And circSLC6A6 promoted the proliferation, migration, and invasion of EC cells in vitro. In vivo, circSLC6A6 promoted tumor growth. Besides, a mechanistic study demonstrated that circSLC6A6 could regulate tumor-associated signaling PI4KB/hedgehog pathway by sponging miR-497-5p. Conclusion. This study illustrates that circSLC6A6 plays a role in promoting EC progression via the miR-497-5p-mediated PI4KB/hedgehog pathway. Our study may provide a potential novel biomarker for EC diagnosis or treatment.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yue-Wei Chen ◽  
Qiu-Rong Du ◽  
Yu-Juan He ◽  
Wen-Shu Chen ◽  
Wen-Yang Jiang ◽  
...  

Circular RNA (circRNA) is a type of noncoding RNA that can interact with miRNAs to regulate gene expression. However, little is known concerning circRNA, which is crucial in the pathogenesis of lung cancer. To date, limited studies have explored the role of circ_0044516 in lung cancer progression. Recently, we observed that circ_0044516 expression levels were obviously elevated in lung cancer tissues and cells. A549 and SPCA1 cells were transfected with circ_0044516 siRNA. We observed that knockdown of circ_0044516 dramatically repressed cell proliferation, increased cell apoptosis, and repressed the cell cycle. Moreover, A549 and SPCA1 cell migration and invasion abilities were greatly repressed by circ_0044516 siRNA. Due to accumulating evidence demonstrating the vital role of cancer stem cells, their mechanism of involvement has drawn increasing attention in tumor progression and metastasis research. We also found that cancer stem cell properties were restrained by silencing circ_0044516 in A549 and SPC-A1 cells. Moreover, in vivo xenograft experiments showed that circ_0044516 downregulation reduced tumor growth. Mechanistically, in lung cancer and using bioinformatics, we demonstrated that circ_0044516 sponges miR-136 targeting MAT2A. Furthermore, rescue assays were carried out to identify that circ_0044516 modulates cell proliferation, invasion, and stemness by regulating miR-136 and MAT2A in lung cancer. In summary, our study revealed that the circ_0044516/miR-136/MAT2A axis is involved in lung cancer progression. Our findings may provide novel targets for diagnosis and therapeutic intervention in lung cancer patients.


Author(s):  
Ying Ye ◽  
Yanan Song ◽  
Juhua Zhuang ◽  
Saifei He ◽  
Jing Ni ◽  
...  

Long noncoding RNA CCAL has been reported to promote tumor progression in various human cancers, including hepatocellular carcinoma, osteosarcoma, and colorectal cancer. However, the role of CCAL in papillary thyroid cancer remains largely unknown. In the present study, we found that the expression of CCAL was upregulated in papillary thyroid tumor tissues compared to adjacent normal tissues. Moreover, the expression of CCAL was positively related with papillary thyroid cancer severity and TNM stage and predicated poor prognosis. Besides, we found that knockdown of CCAL significantly inhibited papillary thyroid cancer cell proliferation, migration, and invasion in vitro and reduced tumor growth and metastasis in vivo. We found that knockdown of CCAL dramatically decreased the expression of NOTCH1 and suppressed the activation of the NOTCH1 signaling pathway. Furthermore, overexpression of NOTCH1 rescued the proliferation, migration, and invasion in papillary thyroid cancer cells. Taken together, our data indicated that CCAL promoted papillary thyroid cancer development and progression by activation of the NOTCH1 pathway, which provided a new insight on the design of therapeutic targets.


2018 ◽  
Vol 47 (4) ◽  
pp. 1578-1588 ◽  
Author(s):  
Shuo Chen ◽  
Li-li Wang ◽  
Kai-xuan Sun ◽  
Yao Liu ◽  
Xue Guan ◽  
...  

Background/Aims: Prostate cancer gene expression marker 1 (PCGEM1) is a long noncoding RNA (lncRNA) and is well known as a promoter in prostate cancer and osteoarthritis synoviocytes. However, the role PCGEM1 plays in epithelial ovarian cancer is unknown. Methods: PCGEM1 expression was examined in epithelial ovarian cancer and normal ovarian tissues using reverse transcription–PCR. Ovarian cancer cell phenotypes and genotypes were examined after PCGEM1 overexpression or downregulation in vitro; besides, the effects of PCGEM1 overexpression was also examined in vivo. Results: PCGEM1 expression level was higher in epithelial ovarian cancer tissues than in normal ovarian tissues and was positively associated with differentiation (Well vs. Mod/Poor). Upregulation of PCGEM1 induced cancer cell proliferation, migration, and invasion, but decreased cell apoptosis through upregulating RhoA, YAP (Yes-associated protein), MMP2 (matrix metalloproteinase 2), Bcl-xL, and P70S6K expression; while PCGEM1 downregulation had the opposite effect. The nude mouse xenograft assay demonstrated that PCGEM1 overexpression promoted tumor growth. Furthermore, silencing RhoA expression reversed the effect of PCGEM1 and significantly inhibited RhoA, YAP, MMP2, Bcl-xL, and P70S6K protein expression. Conclusion: In conclusion, we suggest that PCGEM1 may be an inducer in epithelial ovarian cancer tumorigenesis and progression by upregulating RhoA and the subsequent expression of YAP, P70S6K, MMP2, and Bcl-xL.


Sign in / Sign up

Export Citation Format

Share Document