Melatonin decreases metastasis, primary tumor growth and angiogenesis in a mice model of breast cancer

2021 ◽  
pp. 096032712110028
Author(s):  
Asiye Kubra Karadas ◽  
Sayra Dilmac ◽  
Gunes Aytac ◽  
Gamze Tanriover

The goal of this study was to mechanistically analyze the effects of pre-treatment or post-treatment melatonin on the metastatic spread in a mice model. Consequently, the effects on the tumor growth, angiogenesis and metastasis were evaluated with immunohistochemical and western blot analysis. 8–10 weeks-old female BALB/c mice (n = 60, 10/group) were used. Liver metastatic cells (4TLM) from 4T1 murine breast carcinoma were previously isolated. Melatonin was administrated either before or after the injection of 4TLM cells into the mammary pad. Tumor and vehicle (%6 ethanol) injections were given to vehicle groups. Tumor group consisted of the mice injected with only 4TLM cells injected to tumor group and no intervention to control group. Necropsies were performed 27 days after injection of 4TLM. Primary tumors and metastatic tissues were removed. Furthermore, changes in lung and liver metastasis and primary tumor growth and angiogenesis were evaluated. In our study neutrophil levels were noted to be increased in peripheral blood of the tumor-bearing mice. Melatonin exerted inhibitory effects on the 4TLM-induced leukocytosis. Melatonin significantly decreased lung and liver metastasis, primary tumor growth and angiogenesis. The results demonstrated that melatonin might have a therapeutic role through reducing systemic inflammatory responses, metastasis, tumor growth and angiogenesis.

F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 217 ◽  
Author(s):  
Eileen Shiuan ◽  
Ashwin Inala ◽  
Shan Wang ◽  
Wenqiang Song ◽  
Victoria Youngblood ◽  
...  

Background: The conventional dogma of treating cancer by focusing on the elimination of tumor cells has been recently refined to include consideration of the tumor microenvironment, which includes host stromal cells. Ephrin-A1, a cell surface protein involved in adhesion and migration, has been shown to be tumor suppressive in the context of the cancer cell. However, its role in the host has not been fully investigated. Here, we examine how ephrin-A1 host deficiency affects cancer growth and metastasis in a murine model of breast cancer. Methods: 4T1 cells were orthotopically implanted into the mammary fat pads or injected into the tail veins of ephrin-A1 wild-type (Efna1+/+), heterozygous (Efna1+/-), or knockout (Efna1-/-) mice. Tumor growth, lung metastasis, and tumor recurrence after surgical resection were measured. Flow cytometry and immunohistochemistry (IHC) were used to analyze various cell populations in primary tumors and tumor-bearing lungs. Results: While primary tumor growth did not differ between Efna1+/+, Efna1+/-, and Efna1-/- mice, lung metastasis and primary tumor recurrence were significantly decreased in knockout mice. Efna1-/- mice had reduced lung colonization of 4T1 cells compared to Efna1+/+ littermate controls as early as 24 hours after tail vein injection. Furthermore, established lung lesions in Efna1-/- mice had reduced proliferation compared to those in Efna1+/+ controls. Conclusions: Our studies demonstrate that host deficiency of ephrin-A1 does not impact primary tumor growth but does affect metastasis by providing a less favorable metastatic niche for cancer cell colonization and growth. Elucidating the mechanisms by which host ephrin-A1 impacts cancer relapse and metastasis may shed new light on novel therapeutic strategies.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Signe Z. Ingvarsen ◽  
Henrik Gårdsvoll ◽  
Sander van Putten ◽  
Kirstine S. Nørregaard ◽  
Oliver Krigslund ◽  
...  

Abstract The membrane-anchored matrix metalloprotease MT1-MMP is a potent collagenolytic enzyme with a well-established role in extracellular matrix turnover and cellular invasion into collagen-rich tissues. MT1-MMP is highly expressed in various types of cancer and has been demonstrated to be directly involved in several stages of tumor progression, including primary tumor growth, angiogenesis, invasion and metastasis. Osteosarcoma is the most common type of primary bone cancer. This disease is characterized by invasive tumor growth, leading to extensive bone destruction, and metastasis to the lungs. The tumor cells in human osteosarcoma display a strong expression of MT1-MMP, but the role of MT1-MMP in osteosarcoma progression is currently unknown. In this study, we investigated the role of MT1-MMP during various stages of osteosarcoma development. We utilized an optimized orthotopic murine osteosarcoma model and human osteosarcoma cells in which the MT1-MMP gene was knocked out using CRISPR/Cas9. We observed a strong expression of MT1-MMP in wildtype cells of both primary tumors and lung metastases, but, surprisingly, MT1-MMP deficiency did not affect primary tumor growth, bone degradation or the formation and growth of lung metastases. We therefore propose that, unlike findings reported in other cancers, tumor-expressed MT1-MMP is dispensable for all stages of osteosarcoma progression.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261633
Author(s):  
Jeremy G. T. Wurtzel ◽  
Sophia Lazar ◽  
Sonali Sikder ◽  
Kathy Q. Cai ◽  
Igor Astsaturov ◽  
...  

We investigated the contributions of platelet microRNAs (miRNAs) to the rate of growth and regulation of gene expression in primary ectopic tumors using mouse models. We previously identified an inhibitory role for platelets in solid tumor growth, mediated by tumor infiltration of platelet microvesicles (microparticles) which are enriched in platelet-derived miRNAs. To investigate the specific roles of platelet miRNAs in tumor growth models, we implanted pancreatic ductal adenocarcinoma cells as a bolus into mice with megakaryocyte-/platelet-specific depletion of mature miRNAs. We observed an ~50% increase in the rate of growth of ectopic primary tumors in these mice compared to controls including at early stages, associated with reduced apoptosis in the tumors, in particular in tumor cells associated with platelet microvesicles—which were depleted of platelet-enriched miRNAs—demonstrating a specific role for platelet miRNAs in modulation of primary tumor growth. Differential expression RNA sequencing of tumor cells isolated from advanced primary tumors revealed a broad cohort of mRNAs modulated in the tumor cells as a function of host platelet miRNAs. Altered genes comprised 548 up-regulated transcripts and 43 down-regulated transcripts, mostly mRNAs altogether spanning a variety of growth signaling pathways–notably pathways related to epithelial-mesenchymal transition—in tumor cells from platelet miRNA-deleted mice compared with those from control mice. Tumors in platelet miRNA-depleted mice showed more sarcomatoid growth and more advanced tumor grade, indicating roles for host platelet miRNAs in tumor plasticity. We further validated increased protein expression of selected genes associated with increased cognate mRNAs in the tumors due to platelet miRNA depletion in the host animals, providing proof of principle of widespread effects of platelet miRNAs on tumor cell functional gene expression in primary tumors in vivo. Together, these data demonstrate that platelet-derived miRNAs modulate solid tumor growth in vivo by broad-spectrum restructuring of the tumor cell transcriptome.


Blood ◽  
1994 ◽  
Vol 84 (9) ◽  
pp. 3166-3174
Author(s):  
A Kruger ◽  
V Umansky ◽  
M Rocha ◽  
HJ Hacker ◽  
V Schirrmacher ◽  
...  

Detection of disseminated leukemia within organ is often very difficult and might lead to underestimation of the metastatic load. Therefore, we transduced the mouse ESb T lymphoma with the bacterial lacZ gene, which allowed us to follow metastasis at the single cell level. Intradermal primary tumor growth of lacZ transduced ESbL cells (L-CI.5s) comprised three phases: an initial expansion phase (day 0 to 9, increase from 0 to 8 mm, tumor diameter), a plateau phase (day 9 to 20, constant diameter of 8 mm and necrosis), and a second expansion phase (day 20 to 30, increase from 8 to 15 mm). Liver metastasis could already be detected at day 3 and maintained at that level until day 23, where exponential expansion started. A distinct mosaic-like metastasis pattern developed, with preferential localization of tumor cells to the periportal areas of the liver in immunocompetent animals. In contrast, in immunocompromised mice, primary tumor growth and metastasis were progressive and metastasis appeared as diffuse or focal/clustered. Healthy animals surviving a tumor cell inoculum of a variant cell ESbL- CI.5) with a reduced metastatic potential carried low levels of possibly dormant tumor cells in the bone marrow. Thus, this study showed that host immunocompetence determines to a large extent kinetics and load of spontaneous liver metastases and even influences the pattern and localization of disseminated lymphoma cells.


Blood ◽  
1994 ◽  
Vol 84 (9) ◽  
pp. 3166-3174 ◽  
Author(s):  
A Kruger ◽  
V Umansky ◽  
M Rocha ◽  
HJ Hacker ◽  
V Schirrmacher ◽  
...  

Abstract Detection of disseminated leukemia within organ is often very difficult and might lead to underestimation of the metastatic load. Therefore, we transduced the mouse ESb T lymphoma with the bacterial lacZ gene, which allowed us to follow metastasis at the single cell level. Intradermal primary tumor growth of lacZ transduced ESbL cells (L-CI.5s) comprised three phases: an initial expansion phase (day 0 to 9, increase from 0 to 8 mm, tumor diameter), a plateau phase (day 9 to 20, constant diameter of 8 mm and necrosis), and a second expansion phase (day 20 to 30, increase from 8 to 15 mm). Liver metastasis could already be detected at day 3 and maintained at that level until day 23, where exponential expansion started. A distinct mosaic-like metastasis pattern developed, with preferential localization of tumor cells to the periportal areas of the liver in immunocompetent animals. In contrast, in immunocompromised mice, primary tumor growth and metastasis were progressive and metastasis appeared as diffuse or focal/clustered. Healthy animals surviving a tumor cell inoculum of a variant cell ESbL- CI.5) with a reduced metastatic potential carried low levels of possibly dormant tumor cells in the bone marrow. Thus, this study showed that host immunocompetence determines to a large extent kinetics and load of spontaneous liver metastases and even influences the pattern and localization of disseminated lymphoma cells.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 217
Author(s):  
Eileen Shiuan ◽  
Ashwin Inala ◽  
Shan Wang ◽  
Wenqiang Song ◽  
Victoria Youngblood ◽  
...  

Background: The conventional dogma of treating cancer by focusing on the elimination of tumor cells has been recently refined to include consideration of the tumor microenvironment, which includes host stromal cells. Ephrin-A1, a cell surface protein involved in adhesion and migration, has been shown to be tumor suppressive in the context of the cancer cell. However, its role in the host has not been fully investigated. Here, we examine how ephrin-A1 host deficiency affects cancer growth and metastasis in a murine model of breast cancer. Methods: 4T1 cells were orthotopically implanted into the mammary fat pads or injected into the tail veins of ephrin-A1 wild-type (Efna1+/+), heterozygous (Efna1+/-), or knockout (Efna1-/-) mice. Tumor growth, lung metastasis, and tumor recurrence after surgical resection were measured. Flow cytometry and immunohistochemistry (IHC) were used to analyze various cell populations in primary tumors and tumor-bearing lungs. Results: While primary tumor growth did not differ between Efna1+/+, Efna1+/-, and Efna1-/- mice, lung metastasis and primary tumor recurrence were significantly decreased in knockout mice. Efna1-/- mice had reduced lung colonization of 4T1 cells compared to Efna1+/+ littermate controls as early as 24 hours after tail vein injection. Furthermore, established lung lesions in Efna1-/- mice had reduced proliferation compared to those in Efna1+/+ controls. Conclusions: Our studies demonstrate that host deficiency of ephrin-A1 does not impact primary tumor growth but does affect metastasis by providing a less favorable metastatic niche for cancer cell colonization and growth. Elucidating the mechanisms by which host ephrin-A1 impacts cancer relapse and metastasis may shed new light on novel therapeutic strategies.


2019 ◽  
Vol 39 (7) ◽  
Author(s):  
Xue Yang ◽  
Gaopei Meng

Abstract In order to optimize patient-tailored chemotherapy, a non-small-cell lung cancer (NSCLC)-liver metastasis patient-derived tumor xenograft (PDTX) model is developed. Computed tomography (CT)-guided NSCLC percutaneous biopsy was subcutaneously inoculated into the flank of non-obese diabetic/severe combined immunodeficiency (NOD/SCID) female mice (PDTX F1) and allowed to reach 500 mm3 volume. Then, the tumors were re-transplanted into Balb/c nude mice and liver metastasis was confirmed (PDTX F2), which were further assigned into doxorubicin (DOX), docetaxel (DTX), and non-treatment control group. H&E staining and Keratin 20 (CK20) staining were applied to determine the consistency of PDTX models and primary tumors. Tumor growth curve, body weight, and the expression of p65 nuclear factor (NF)-κB and the secretion of interferon (IFN)-γ were investigated. The successive transplant procedure can induce the NSCLC-liver metastasis PDTX model, and morphological and structural characteristics of PDTX models (F2) were in accordance with primary tumors. DOX and DTX could delay tumor growth, activate the NF-κB pathway, and promote IFN-γ secretion in the PDTX models. The NSCLC-liver metastasis PDTX model is established and provides a powerful mean to assess chemotherapeutic efficacy.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Johannes Linxweiler ◽  
Turkan Hajili ◽  
Christina Körbel ◽  
Carolina Berchem ◽  
Philip Zeuschner ◽  
...  

1995 ◽  
Vol 81 (5) ◽  
pp. 370-377 ◽  
Author(s):  
Ovidio Rettori ◽  
Ana Neuza Vieira-Matos ◽  
Quivo S. Tahin

Cancer pathognomonic systemic effects (PSE) have high individual variability. For this reason present data were collected daily and synchronized considering four main points: inoculation day, onset of PSE, aggravation and death. The subclinical period free of PSE ranged between 15.7±2.2 days, the clinical period was less variable, 8.9±0.5 days, divided in a moderate and a grave phase of nearly the same length. PSE involved disturbances of fundamental homeostatic regulations: appetite, sodium, water, immune, etc. PSE triggering correlated highly with survival (r2=0.95, P<0.01), but poorly with primary tumor growth, and it was anticipated by metastases from 20.5±2.6 to 10.6±1.1 days (P<0.01). After multifocal simultaneous inoculations, PSE triggering was anticipated to 4.2±0.2 days (marked reduction of individual variability), in the presence of small total-tumor masses, absence of macroscopic metastases, and without changes in the following clinical period features. PSE triggering seems to be a major prognostic indicator probably related to multifocal tumor growth.


Sign in / Sign up

Export Citation Format

Share Document