scholarly journals Fatigue and cognitive function in systemic lupus erythematosus: associations with white matter microstructural damage. A diffusion tensor MRI study and meta-analysis

Lupus ◽  
2016 ◽  
Vol 26 (6) ◽  
pp. 588-597 ◽  
Author(s):  
S J Wiseman ◽  
M E Bastin ◽  
I F Hamilton ◽  
D Hunt ◽  
S J Ritchie ◽  
...  

Objective The objective of this study was to investigate fatigue and cognitive impairments in systemic lupus erythematous (SLE) in relation to diffuse white matter microstructural brain damage. Methods Diffusion tensor MRI, used to generate biomarkers of brain white matter microstructural integrity, was obtained in patients with SLE and age-matched controls. Fatigue and cognitive function were assessed and related to SLE activity, clinical data and plasma biomarkers of inflammation and endothelial dysfunction. Results Fifty-one patients with SLE (mean age 48.8 ± 14.3 years) were included. Mean diffusivity (MD) was significantly higher in all white matter fibre tracts in SLE patients versus age-matched healthy controls ( p < 0.0001). Fatigue in SLE was higher than a normal reference range ( p < 0.0001) and associated with lower MD ( ß = −0.61, p = 0.02), depression ( ß = 0.17, p = 0.001), anxiety ( ß = 0.13, p = 0.006) and higher body mass index ( ß = 0.10, p = 0.004) in adjusted analyses. Poorer cognitive function was associated with longer SLE disease duration ( p = 0.003) and higher MD ( p = 0.03) and, in adjusted analysis, higher levels of IL-6 ( ß = −0.15, p = 0.02) but not with MD. Meta-analysis (10 studies, n = 261, including the present study) confirmed that patients with SLE have higher MD than controls. Conclusion Patients with SLE have more microstructural brain white matter damage for age than the general population, but this does not explain increased fatigue or lower cognition in SLE. The association between raised IL-6 and worse current cognitive function in SLE should be explored in larger datasets.

Lupus ◽  
2021 ◽  
pp. 096120332110450
Author(s):  
Cong Zhou ◽  
Man Dong ◽  
Weiwei Duan ◽  
Hao Lin ◽  
Shuting Wang ◽  
...  

Background Systemic lupus erythematosus is often accompanied with neuropsychiatric symptoms. Neuroimaging evidence indicated that microstructural white matter (WM) abnormalities play role in the neuropathological mechanism. Diffusion tensor imaging (DTI) studies allows the assessment of the microstructural integrity of WM tracts, but existing findings were inconsistent. This present study aimed to conduct a coordinate‐based meta‐analysis (CBMA) to identify statistical consensus of DTI studies in SLE. Methods Relevant studies that reported the differences of fractional anisotropy (FA) between SLE patients and healthy controls (HC) were searched systematically. Only studies reported the results in Talairach or Montreal Neurological Institute (MNI) coordinates were included. The anisotropic effect size version of signed differential mapping (AES-SDM) was applied to detect WM alterations in SLE. Results Totally, five studies with seven datasets which included 126 patients and 161 HC were identified. The pooled meta-analysis demonstrated that SLE patients exhibited significant FA reduction in the left striatum and bilateral inferior network, mainly comprised the corpus callosum (CC), bilateral inferior fronto-occipital fasciculus (IFOF), bilateral anterior thalamic projections, bilateral superior longitudinal fasciculus (SLF), left inferior longitudinal fasciculus (ILF), and left insula. No region with higher FA was identified. Conclusions Disorders of the immune system might lead to subtle WM microstructural alterations in SLE, which might be related with cognitive deficits or emotional distress symptoms. This provides a better understanding of the pathological mechanism of microstructural brain abnormalities in SLE.


2021 ◽  
Vol 80 (2) ◽  
pp. 567-576
Author(s):  
Fei Han ◽  
Fei-Fei Zhai ◽  
Ming-Li Li ◽  
Li-Xin Zhou ◽  
Jun Ni ◽  
...  

Background: Mechanisms through which arterial stiffness impacts cognitive function are crucial for devising better strategies to prevent cognitive decline. Objective: To examine the associations of arterial stiffness with white matter integrity and cognition in community dwellings, and to investigate whether white matter injury was the intermediate of the associations between arterial stiffness and cognition. Methods: This study was a cross-sectional analysis on 952 subjects (aged 55.5±9.1 years) who underwent diffusion tensor imaging and measurement of brachial-ankle pulse wave velocity (baPWV). Both linear regression and tract-based spatial statistics were used to investigate the association between baPWV and white matter integrity. The association between baPWV and global cognitive function, measured as the mini-mental state examination (MMSE) was evaluated. Mediation analysis was performed to assess the influence of white matter integrity on the association of baPWV with MMSE. Results: Increased baPWV was significantly associated with lower mean global fractional anisotropy (β= –0.118, p < 0.001), higher mean diffusivity (β= 0.161, p < 0.001), axial diffusivity (β= 0.160, p < 0.001), and radial diffusivity (β= 0.147, p < 0.001) after adjustment of age, sex, and hypertension, which were measures having a direct effect on arterial stiffness and white matter integrity. After adjustment of age, sex, education, apolipoprotein E ɛ4, cardiovascular risk factors, and brain atrophy, we found an association of increased baPWV with worse performance on MMSE (β= –0.093, p = 0.011). White matter disruption partially mediated the effect of baPWV on MMSE. Conclusion: Arterial stiffness is associated with white matter disruption and cognitive decline. Reduced white matter integrity partially explained the effect of arterial stiffness on cognition.


2009 ◽  
Vol 21 (7) ◽  
pp. 1406-1421 ◽  
Author(s):  
Elizabeth A. Olson ◽  
Paul F. Collins ◽  
Catalina J. Hooper ◽  
Ryan Muetzel ◽  
Kelvin O. Lim ◽  
...  

Healthy participants (n = 79), ages 9–23, completed a delay discounting task assessing the extent to which the value of a monetary reward declines as the delay to its receipt increases. Diffusion tensor imaging (DTI) was used to evaluate how individual differences in delay discounting relate to variation in fractional anisotropy (FA) and mean diffusivity (MD) within whole-brain white matter using voxel-based regressions. Given that rapid prefrontal lobe development is occurring during this age range and that functional imaging studies have implicated the prefrontal cortex in discounting behavior, we hypothesized that differences in FA and MD would be associated with alterations in the discounting rate. The analyses revealed a number of clusters where less impulsive performance on the delay discounting task was associated with higher FA and lower MD. The clusters were located primarily in bilateral frontal and temporal lobes and were localized within white matter tracts, including portions of the inferior and superior longitudinal fasciculi, anterior thalamic radiation, uncinate fasciculus, inferior fronto-occipital fasciculus, corticospinal tract, and splenium of the corpus callosum. FA increased and MD decreased with age in the majority of these regions. Some, but not all, of the discounting/DTI associations remained significant after controlling for age. Findings are discussed in terms of both developmental and age-independent effects of white matter organization on discounting behavior.


2001 ◽  
Vol 19 (9) ◽  
pp. 1167-1172 ◽  
Author(s):  
Mara Cercignani ◽  
Matilde Inglese ◽  
Malgorzata Siger-Zajdel ◽  
Massimo Filippi

2018 ◽  
Author(s):  
Susana Muñoz Maniega ◽  
Rozanna Meijboom ◽  
Francesca M. Chappell ◽  
Maria C. Valdés Hernández ◽  
John M. Starr ◽  
...  

AbstractBrain white matter hyperintensities (WMH), common in older adults, may contribute to cortical disconnection and cognitive dysfunction. The presence of WMH within white matter (WM) tracts indicates underlying microstructural WM changes that may also affect the normal-appearing WM (NAWM) of a tract. We performed an exploratory study using diffusion magnetic resonance imaging of 52 healthy participants from the Lothian Birth Cohort 1936 (age 72.2 ± 0.7 years) selected to include a range of WMH burden, to quantify microstructural changes of tracts intersecting WMH. We reconstructed tracts using automated tractography and identified intersections with WMH. Tissue volumes and water diffusion tensor parameters (mean diffusivity (MD) and fractional anisotropy (FA)) were established for tract-WMH and tract-NAWM. MD and FA were also measured for tract-NAWM at 2 mm incremental distances from the tract-WMH edge, and from the edge of nearby, non-intersecting, WMH. We observed microstructural changes in tract-WMH suggestive of tissue damage. Tract-NAWM also showed a spatial gradient of FA and MD abnormalities, which diminished with distance from the tract-WMH. Nearby WMH lesions, not directly crossed by the tract, also affected tract microstructure with a similar pattern. Additionally, both FA and MD changes in tract-NAWM were predicted by FA and MD changes respectively in tract-WMH. FA was also predicted by tract-WMH overlap volume, whereas MD was better predicted by whole-brain WMH load. These results suggest that tract-NAWM microstructure is affected by the pathological process underlying WMH, when WMH are either within or near to the tract. The changes in NAWM tract tissue may indicate future lesion progression and may play an important role in cognitive ageing.


2021 ◽  
Author(s):  
Xiaoyu Xu ◽  
Yuying Jin ◽  
Ning Pan ◽  
Muqing Cao ◽  
Jin Jing ◽  
...  

Abstract Cantonese and Mandarin are logographic languages, and the phonology is the main difference between the two languages. It is unclear whether long-term experience of Cantonese-Mandarin bilingualism will shape different brain white matter structures of pathways related to phonological processing. 30 Cantonese-Mandarin bilinguals and 30 Mandarin monolinguals completed diffusion-weighted imaging (DWI) scans and phonological processing tasks. The tractography and TBSS were used to investigate the structural differences in the bilateral superior longitudinal fasciculus (SLF), inferior longitudinal fasciculus (ILF) and inferior fronto-occipital fasciculus (IFOF) between Cantonese-Mandarin bilinguals and Mandarin monolinguals. Post-hoc correlation analysis was conducted to investigate the relationship between the different structures with phonological processing skills. Compared to the Mandarin monolinguals, the Cantonese-Mandarin bilinguals had higher fractional anisotropy (FA) along the left ILF, higher mean diffusivity (MD) in the clusters along the temporoparietal segment of SLF (tSLF), as well as higher axial diffusivity (AD) in the right tSLF, IFOF, bilateral ILF. The mean AD of the different voxels in the right IFOF and the mean FA of the different voxels in the left ILF were positively correlated with the inverse efficiency score (IES) of the Cantonese auditory and Mandarin visual rhyming judgment tasks respectively within the bilingual group. Long-term experience of Cantonese-Mandarin bilinguals shape different brain white matter structures including right tSLF, IFOF, bilateral ILF. The bilinguals’ white matter showed higher diffusivity, especially in the axonal direction, than the monolinguals. These changes were related to bilinguals’ phonological processing.


2021 ◽  
Vol 15 ◽  
Author(s):  
Ami Tsuchida ◽  
Alexandre Laurent ◽  
Fabrice Crivello ◽  
Laurent Petit ◽  
Antonietta Pepe ◽  
...  

Human brain white matter undergoes a protracted maturation that continues well into adulthood. Recent advances in diffusion-weighted imaging (DWI) methods allow detailed characterizations of the microstructural architecture of white matter, and they are increasingly utilized to study white matter changes during development and aging. However, relatively little is known about the late maturational changes in the microstructural architecture of white matter during post-adolescence. Here we report on regional changes in white matter volume and microstructure in young adults undergoing university-level education. As part of the MRi-Share multi-modal brain MRI database, multi-shell, high angular resolution DWI data were acquired in a unique sample of 1,713 university students aged 18–26. We assessed the age and sex dependence of diffusion metrics derived from diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) in the white matter regions as defined in the John Hopkins University (JHU) white matter labels atlas. We demonstrate that while regional white matter volume is relatively stable over the age range of our sample, the white matter microstructural properties show clear age-related variations. Globally, it is characterized by a robust increase in neurite density index (NDI), and to a lesser extent, orientation dispersion index (ODI). These changes are accompanied by a decrease in diffusivity. In contrast, there is minimal age-related variation in fractional anisotropy. There are regional variations in these microstructural changes: some tracts, most notably cingulum bundles, show a strong age-related increase in NDI coupled with decreases in radial and mean diffusivity, while others, mainly cortico-spinal projection tracts, primarily show an ODI increase and axial diffusivity decrease. These age-related variations are not different between males and females, but males show higher NDI and ODI and lower diffusivity than females across many tracts. These findings emphasize the complexity of changes in white matter structure occurring in this critical period of late maturation in early adulthood.


2017 ◽  
Author(s):  
Matthew Walton ◽  
Deborah Dewey ◽  
Catherine Lebel

AbstractBrain alterations are associated with reading and language difficulties in older children, but little research has investigated relationships between early language skills and brain white matter structure during the preschool period. We studied 68 children aged 3.0-5.6 years who underwent diffusion tensor imaging and participated in assessments of Phonological Processing and Speeded Naming. Tract-based spatial statistics and tractography revealed relationships between Phonological Processing and fractional anisotropy and mean diffusivity in bilateral ventral white matter pathways, the corpus callosum, and corticospinal tracts. The relationships observed in left ventral pathways are consistent with studies in older children, and demonstrate that structural markers for language difficulties are apparent as young as 3 years of age. Our findings in right hemisphere areas that are not as commonly found in adult studies suggest that young children rely on a widespread network for language processing that becomes more specialized with age.


Sign in / Sign up

Export Citation Format

Share Document