Come rain or shine? Public expectation on local weather change and differential effects on climate change attitude

2014 ◽  
Vol 24 (8) ◽  
pp. 928-942 ◽  
Author(s):  
Alex Y. Lo ◽  
C. Y. Jim
Author(s):  
Michael J. Branney ◽  
Jan Zalasiewicz

‘Volcanoes, climate, and the biosphere’ explores how volcanism has perturbed both climate and the complement of living organisms on Earth, both locally and globally. Volcanic outbursts, depending on their nature and scale, may cause global warming or global cooling. In the historical record, even geologically modest eruptions have had dramatic repercussions. Volcanoes can affect local weather. It is possible that climate change can, in turn, affect volcanism.


Author(s):  
Libby Robin

As global climate change shifts seasonal patterns, local and uncertain seasons of Australia have global relevance. Australia’s literature tracks extreme local weather events, exploring ‘slow catastrophes’ and ‘endurance.’ Humanists can change public policy in times when stress is a state of life, by reflecting on the psyches of individuals, rather than the patterns of the state. ‘Probable’ futures, generated by mathematical models that predict nature and economics, have little to say about living with extreme weather. Hope is not easily modelled. The frameworks that enable hopeful futures are qualitatively different. They can explore the unimaginable by offering an ‘interior apprehension.’


2021 ◽  
Vol 13 (18) ◽  
pp. 10254
Author(s):  
Anton Galich ◽  
Simon Nieland ◽  
Barbara Lenz ◽  
Jan Blechschmidt

Bicycle usage is significantly affected by weather conditions. Climate change is, therefore, expected to have an impact on the volume of bicycle traffic, which is an important factor in the planning and design of bicycle infrastructures. To predict bicycle traffic in a changed climate in the city of Berlin, this paper compares a traditional statistical approach to three machine learning models. For this purpose, a cross-validation procedure is developed that evaluates model performance on the basis of prediction accuracy. XGBoost showed the best performance and is used for the prediction of bicycle counts. Our results indicate that we can expect an overall annual increase in bicycle traffic of 1–4% in the city of Berlin due to the changes in local weather conditions caused by global climate change. The biggest changes are expected to occur in the winter season with increases of 11–14% due to rising temperatures and only slight increases in precipitation.


Toxins ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 276
Author(s):  
Cheng Liu ◽  
H. J. Van der Fels-Klerx

Our climate is projected to change gradually over time. Mycotoxin occurrence in cereal grains is both directly and indirectly related to local weather and to climate changes. Direct routes are via the effects of precipitation, relative humidity, and temperatures on both fungal infection of the grain and mycotoxin formation. Indirect routes are via the effects of the wind dispersal of spores, insect attacks, and shifts in cereal grain phenology. This review aimed to investigate available modeling studies for climate change impacts on mycotoxins in cereal grains, and to identify how they can be used to safeguard food safety with future climate change. Using a systematic review approach, in total, 53 relevant papers from the period of 2005–2020 were retrieved. Only six of them focused on quantitative modeling of climate change impacts on mycotoxins, all in pre-harvest cereal grains. Although regional differences exist, the model results generally show an increase in mycotoxins in a changing climate. The models do not give an indication on how to adapt to climate change impacts. If available models were linked with land use and crop models, scenario analyses could be used for analyzing adaptation strategies to avoid high mycotoxin presence in cereal grains and to safeguard the safety of our feed and food.


Sign in / Sign up

Export Citation Format

Share Document