scholarly journals Bioartificial Organ Manufacturing Technologies

2018 ◽  
Vol 28 (1) ◽  
pp. 5-17 ◽  
Author(s):  
Xiaohong Wang

Bioartificial organ manufacturing technologies are a series of enabling techniques that can be used to produce human organs based on bionic principles. During the last ten years, significant progress has been achieved in the development of various organ manufacturing technologies. According to the degree of automation, organ manufacturing technologies can be divided into three main groups: (1) fully automated; (2) semi-automated; (3) handworked (or handmade); each has the advantages and disadvantages for bioartificial organ manufacturing. One of the most promising bioartificial organ manufacturing technologies is to use combined multi-nozzle three-dimensional printing techniques to automatically assemble personal cells along with other biomaterials to build exclusive organ substitutes for defective/failed human organs. This is the first time that advanced bioartificial organ manufacturing technologies have been reviewed. These technologies hold the promise to greatly improve the quality of health and average lifespan of human beings in the near future.

Author(s):  
Кучерова ◽  
Anna Kucherova ◽  
Дребезгова ◽  
Mariya Drebezgova ◽  
Чернышева ◽  
...  

The article presents information on the modern three-dimensional technologies and the main factors constraining their development. In recent decades there has been revolutionary new approaches to construction, in particular three-dimensional printing technology construction features, allowing you to abandon the traditional formwork, which significantly reduces costs and allows to create various architectural forms of buildings and structures. For the development of construction of next generation technologies requires the development of new materials with desired controlled properties: quick setting time, high strength, uniformity and strength of adhesion between the various layers. The use of additive manufacturing technologies for the construction of buildings and structures will significantly reduce costs by reducing costs of materials and improve performance, discover new creative approaches to create a variety of architectural shape of our cities.


2002 ◽  
Vol 758 ◽  
Author(s):  
Hong-Ren Wang ◽  
Michael J. Cima ◽  
Emanuel M. Sachs

ABSTRACTThe traditional Slurry-based Three-dimensional Printing (S-3DP™) process has been used to fabricate complex structure materials by printing organic binders in selected positions on each printing layer. This process is modified to fabricate functional graded materials, such as gradient index (GRIN) lenses, by depositing different concentrations of dopant at different positions. The modified S-3DP™ process offers advantages over conventional GRIN lens processes, including reduced processing time, improved compositional flexibility, and increased index profile dimensionality. Two different approximately parabolic dopant concentration profiles, which have maximum alumina concentrations of 1.63 mol% and 2.50 mol%, are printed into silica powder beds using S-3DP™. The samples with maximum alumina concentration of 1.63 mol% have been sintered into optical transparency at 1650 0C for 30 minutes in a vacuum furnace (5×10-6 torr) while an additional dehydration process before sintering was required for the samples with maximum alumina concentration of 2.50 mol%. The magnifying effects of GRIN lenses with profiles of 1.63 mol% and 2.50 mol% alumina were observed, yielding effective focal lengths of 10 cm and 6.1 cm, respectively. Light diffraction, which results from the locally inhomogeneous dopant distribution and reduces the optical quality of GRIN lenses, was also observed.


Author(s):  
Christopher B. Williams ◽  
Farrokh Mistree ◽  
David W. Rosen

There exist many different layered manufacturing technologies for the realization of prototypes and fully-functional artifacts. Although extremely different in solution principle and embodiment, there exists functional commonality between each technology. This commonality affords the authors an opportunity to propose a new classification framework for layered manufacturing technologies. In addition to using it as a means of classifying existing processes, the authors present the framework as a tool to aid a designer in the conceptual design of new layered manufacturing technologies. The authors close the paper with an example of such an implementation; specifically, the conceptual design of a novel means of obtaining metal artifacts from three-dimensional printing.


2011 ◽  
Vol 133 (12) ◽  
Author(s):  
Christopher B. Williams ◽  
Farrokh Mistree ◽  
David W. Rosen

Many different additive manufacturing (AM) technologies enable the realization of prototypes and fully-functional artifacts. Although very different in solution principle and embodiment, significant functional commonality exists among the technologies. This commonality affords the authors an opportunity to propose a new classification framework for additive manufacturing technologies. Specifically, by following the systematic abstraction approach proposed by the design methodology of Pahl and Beitz, the authors first identify the working principles of each AM process. A morphological matrix is then employed to functionally present these principles such that commonalities between processes can be identified. In addition to using it as a means of classifying existing processes, the authors present the framework as a tool to aid a designer in the conceptual design of new additive manufacturing technologies. The authors close the paper with an example of such an implementation; specifically, the conceptual design of a novel means of obtaining metal artifacts from three-dimensional printing.


2016 ◽  
Vol 16 (3) ◽  
pp. 99-102 ◽  
Author(s):  
G. Skorulski

Abstract The paper presents the use of rapid prototyping technology of three dimensional printing (3DP) to make a prototype shell casting mold. In the first step, for identification purposes, a mold was prepared to enable different alloys to be cast. All molds being cast were designed in a universal CAD environment and printed with the zp151 composite material (Calcium sulfate hemihydrate) with a zb63 binder (2-pyrrolidone). It is designated to be used to prepare colourful models presenting prototypes or casting models and molds. The usefulness of 3DP technology for use with copper alloys, aluminum and zinc was analyzed. The strength of the mold during casting was assumed as a characteristic comparative feature in the material resistance to high temperature, the quality of the resulting casting and its surface roughness. Casting tests were carried out in vacuum – pressure casting. The casting programs applied, significantly increased the quality of castings and enabled precise mold submergence. Significant improvement was noted in the quality compared to the same castings obtained by gravity casting.


2020 ◽  
Author(s):  
Guanli Xie ◽  
Tao Wang ◽  
Bo Jiang ◽  
Chunyan Yang ◽  
Deguang Li ◽  
...  

Abstract BackgroundThe complexity and diversity of spine pathology lead to the complexity and diversity of spinal surgery. The emergence and application of three-dimensional printing (3DP) technology has brought good news to surgeons and patients. However, the use of 3DP in spinal surgery remains controversial. Therefore, this study was designed to investigate whether 3D printing technology is beneficial for spinal surgery.MethodsThree English online databases including EMBASE (via embase.com), Medline (via PubMed), and Cochrane Central Register of Controlled Trials (CENTRAL) will be searched from inception until August 31, 2020. Document records retrieved according to the pre-defined search strategy will be managed by EndNote X7. The MINORST (methodological index for non-randomized studies) item recommended for non-randomized controlled interventional studies in surgery will be used to assess the quality of non-randomized controlled studies. The “Risk of bias” (ROB) table will be used to assess the quality of randomized controlled studies. The data extraction will be completed by two authors independently, one of whom extracts and the other checks. If there is any missing data, original author will be contacted to obtain the data required. Any inconsistencies were agreed upon by discussion with a third investigator. If the collected data can be synthesized, Review Manager (RevMan5.3) will be used to estimate the overall effect of 3DP for Spinal surgery. Otherwise, only the qualitative analysis will be carried out. According to the results of clinical heterogeneity test, random effects model or fixed effects model will be used for data synthesis. The sources of clinical heterogeneity will be explored by meta-regression and subgroup analysis. If more than 10 studies are included, funnel plots will be used to assess the publication bias. This review will be carried out in strict accordance with Cochrane Handbook for Systematic Reviews of Interventions.ConclusionThis study will can provide surgeons and patients with evidence-based evidence for the use of 3D printing technology in spinal surgery.Systematic review registrationPROSPERO/ID = CRD42020204053.


2018 ◽  
Vol 69 (6) ◽  
pp. 1455-1457
Author(s):  
Dragos Octavian Palade ◽  
Bogdan Mihail Cobzeanu ◽  
Petronela Zaharia ◽  
Marius Dabija

Three-dimensional printing has numerous applications and has gained much interest in the medical world. The constantly improving quality of 3D-printing applications has contributed to their increased use on patients. Nowadays, 3D printing is very well integrated in the surgical practice and research. Also, the field of head and neck reconstructive surgery is constantly evolving because of the three-dimensional printing, a technology which can be widely used in a variety of situations such as reconstruction of tissue defects, surgical planning, medical modeling and prosthesis. By using 3D printing into tissue engineering and materials, it may be possible for otolaryngologists to implant 3D printed functional grafts into patients and will also provide a rapid production of personalized patient-specific devices. Advances in 3D printed implants and future tissue-engineered constructs will bring great progress to the field of otorhinolaryngology.


2020 ◽  
Vol 13 (2) ◽  
pp. 77-84
Author(s):  
Nikita Yur'ev ◽  
V. Lavlinskiy ◽  
Nadezhda Bokareva

The article analyzes the properties of conductive inks and substrates for their application. Experimental data reflecting the relationship between the chemical composition and physical properties of the ink solution are shown. The properties of electrical conductivity and ease of application to the substrate are described. This article presents a combination of filler and binder solutions in conjunction with the production technology of conductive ink. The advantages and disadvantages of various combinations of solutions and their application for further three-dimensional formation of boards are evaluated. The article describes the behavior of polymer solutions for use in existing three-dimensional printing technologies.


Author(s):  
Sofiane Guessasma ◽  
Weihong Zhang ◽  
Jihong Zhu ◽  
Sofiane Belhabib ◽  
Hedi Nouri

Three-dimensional printing offers varied possibilities of design that can be bridged to optimisation tools. In this review paper, a critical opinion on optimal design is delivered to show limits, benefits and ways of improvement in additive manufacturing. This review emphasises on design constrains related to additive manufacturing and differences that may appear between virtual and real design. These differences are explored based on 3D imaging techniques that are intended to show defect related processing. Guidelines of safe use of the term “optimal design” are derived based on 3D structural information.


2019 ◽  
Vol 26 (2) ◽  
pp. 402-408 ◽  
Author(s):  
Aukse Navaruckiene ◽  
Sigita Kasetaite ◽  
Jolita Ostrauskaite

Purpose This study aims to present a design and investigation of novel vanillin-based thiol-ene photocurable systems as candidate materials for optical three-dimensional printing. Design/methodology/approach Two vanillin acrylates, vanillin dimethacrylate and vanillin diacrylate, were tested in thiol-ene photocurable systems with 1,3-benzenedithiol. The kinetics of photocross-linking was investigated by real-time photorheometry using two photoinitiators, diphenyl (2,4,6-trimethylbenzoyl)phosphine oxide or ethyl (2,4,6-trimethylbenzoyl)phenylphosphinate in different quantities. The dependencies of rheological properties of resins on the used vanillin derivative, photoinitiator, and the presence of a solvent, as well as structure, thermal and mechanical properties of the selected polymers were investigated. Findings The most rigid polymers were obtained from vanillin diacrylate-based resins without any solvent. The vanillin diacrylate-based polymer possessed higher values of cross-linking density, the yield of insoluble fraction, thermal stability and better mechanical properties in comparison to the vanillin dimethacrylate-based polymer. Originality/value The kinetics of photocross-linking of vanillin-based thiol-ene systems was investigated by real-time photorheometry for the first time. The designed novel photocurable systems based on vanillin acrylates and 1,3-benzenedithiol are promising renewable photoresins for optical three-dimensional printing on demand.


Sign in / Sign up

Export Citation Format

Share Document