scholarly journals Detrimental Role of miRNA-144-3p in Intracerebral Hemorrhage Induced Secondary Brain Injury is Mediated by Formyl Peptide Receptor 2 Downregulation BothIn VivoandIn Vitro

2018 ◽  
Vol 28 (6) ◽  
pp. 723-738 ◽  
Author(s):  
Weijian Fan ◽  
Xiang Li ◽  
Dongping Zhang ◽  
Haiying Li ◽  
Haitao Shen ◽  
...  

Although microRNA-144-3p (miRNA-144-3p) has been shown to suppress tumor proliferation and invasion, its function in intracerebral hemorrhage (ICH)-induced secondary brain injury (SBI) remains unclear. Thus, this study was designed to investigate the role of miRNA-144-3p in ICH. To accomplish this, we used adult male Sprague-Dawley rats to establish an in vivo ICH model by injecting autologous blood, while cultured primary rat cortical neurons were exposed to oxyhemoglobin (OxyHb) to mimic ICH in vitro. To examine the role of miRNA-144-3p in ICH-induced SBI, we used an miRNA-144-3p mimic and inhibitor both in vivo and in vitro. Following ICH induction, we found miRNA-144-3p expression to increase. Additionally, we predicted the formyl peptide receptor 2 (FPR2) to be a potential miRNA-144-3p target, which we validated experimentally, with FPR2 expression downregulated when miRNA-144-3p was upregulated. Furthermore, elevated miRNA-144-3p levels aggravated brain edema and neurobehavioral disorders and induced neuronal apoptosis via the downregulation of FPR2 both in vivo and in vitro. We suspected that these beneficial effects provided by FPR2 were associated with the PI3K/AKT pathway. We validated this finding by overexpressing FPR2 while inhibiting PI3K/AKT in vitro and in vivo. In conclusion, miRNA-144-3p aggravated ICH-induced SBI by targeting and downregulating FPR2, thereby contributing to neurological dysfunction and neural apoptosis via PI3K/AKT pathway activation. These findings suggest that inhibiting miRNA-144-3p may offer an effective approach to attenuating brain damage incurred after ICH and a potential therapy to improve ICH-induced SBI.

2017 ◽  
Vol 30 (4) ◽  
pp. 413-419 ◽  
Author(s):  
Jianping Niu ◽  
Rui Hu

This study aimed to explore the role and mechanism(s) of flunarizine hydrochloride in the intracerebral hemorrhage (ICH) rats. The 32 adult male Sprague Dawley (SD) rats were randomly assigned into four groups: control group, sham group, ICH group, and FLU + ICH group. The effects of flunarizine hydrochloride were assessed on the basis of hematoma volume, blood–brain barrier (BBB) integrity, and brain water content in the ICH rat models. The role of flunarizine hydrochloride in cell recovery was assessed by behavioral scores, quantitative real-time polymerase chain reaction (qRT-PCR), and western blot assay. Involvement of PI3K/AKT pathway in exerting the effect of flunarizine hydrochloride was also determined. Results showed that the hematoma volume, BBB integrity, and brain water content were significantly decreased in the FLU + ICH group. Cell apoptosis significantly increased in the ICH model group, while flunarizine hydrochloride decreased this increase. The expressions of glial cell line-derived neurotrophic factor (GDNF), neuroglobin (NGB), and p-AKT were increased after flunarizine hydrochloride treatment in ICH rats. In conclusion, flunarizine hydrochloride has protective effects against ICH by reducing brain injury, cell apoptosis, and the activation of P13K/AKT pathway. These findings provide a theoretical basis for the treatment of flunarizine hydrochloride in ICH.


2007 ◽  
Vol 14 (6) ◽  
pp. 678-684
Author(s):  
Eiji Ohara ◽  
Yoshitaka Kumon ◽  
Toshihiro Kobayashi ◽  
Hiroaki Takeuchi ◽  
Tetsuro Sugiura

ABSTRACT N-Formyl peptide receptor-like 1 (fPRL1) is a member of the chemoattractant subfamily of G protein-coupled receptors and plays a key role in inflammation via chemotaxis and the regulation of mediator release from leukocytes. Activated fPRL1 has recently been shown to induce a complicated pattern of cellular signaling in vitro, but the details of the regulation and alteration of leukocyte cellular fPRL1 during inflammation in vivo remain unclear. To clarify the alteration of neutrophil fPRL1 during inflammation in vivo, the immunohistochemical staining of neutrophil fPRL1 in samples from patients with purulent dermatitis was performed. The in vitro morphological alteration of neutrophil fPRL1 on cellular membranes by stimulation with N-formylmethionyl-leucyl-phenylalanine (fMLP) was also examined. Both the cytoplasm and the cellular membranes of blood neutrophils stained strongly for fPRL1. On the other hand, the cellular membranes of neutrophils in dermatitis tissue stained strongly for fPRL1 but the cytoplasm stained weakly. The enhancement of neutrophil fPRL1 on cellular membranes by stimulation with fMLP indicates the exocytosis of neutrophil fPRL1-containing granules. In conclusion, we for the first time confirmed the alteration of neutrophil fPRL1 in clinical cases of purulent dermatitis. Cytoplasm that was weakly stained and cellular membranes that were well stained for fPRL1 were considered to be distinctive features of activated neutrophils in purulent dermatitis tissue.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 228
Author(s):  
Izabella Lice ◽  
José Marcos Sanches ◽  
Rebeca D. Correia-Silva ◽  
Mab P. Corrêa ◽  
Marcelo Y. Icimoto ◽  
...  

Formyl peptide receptors (Fprs) are a G-protein-coupled receptor family mainly expressed on leukocytes. The activation of Fpr1 and Fpr2 triggers a cascade of signaling events, leading to leukocyte migration, cytokine release, and increased phagocytosis. In this study, we evaluate the effects of the Fpr1 and Fpr2 agonists Ac9-12 and WKYMV, respectively, in carrageenan-induced acute peritonitis and LPS-stimulated macrophages. Peritonitis was induced in male C57BL/6 mice through the intraperitoneal injection of 1 mL of 3% carrageenan solution or saline (control). Pre-treatments with Ac9-12 and WKYMV reduced leukocyte influx to the peritoneal cavity, particularly neutrophils and monocytes, and the release of IL-1β. The addition of the Fpr2 antagonist WRW4 reversed only the anti-inflammatory actions of WKYMV. In vitro, the administration of Boc2 and WRW4 reversed the effects of Ac9-12 and WKYMV, respectively, in the production of IL-6 by LPS-stimulated macrophages. These biological effects of peptides were differently regulated by ERK and p38 signaling pathways. Lipidomic analysis evidenced that Ac9-12 and WKYMV altered the intracellular lipid profile of LPS-stimulated macrophages, revealing an increased concentration of several glycerophospholipids, suggesting regulation of inflammatory pathways triggered by LPS. Overall, our data indicate the therapeutic potential of Ac9-12 and WKYMV via Fpr1 or Fpr2-activation in the inflammatory response and macrophage activation.


2011 ◽  
Vol 29 (4) ◽  
pp. 630-636 ◽  
Author(s):  
TAO CHEN ◽  
LEI ZHANG ◽  
YAN QU ◽  
KAI HUO ◽  
XIAOFAN JIANG ◽  
...  

Author(s):  
Igor Snapkov ◽  
Carl Otto Öqvist ◽  
Yngve Anton Figenschau ◽  
Per Kogner ◽  
John Inge Johnsen ◽  
...  

Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1918
Author(s):  
Yanyuan Wu ◽  
Marianna Sarkissyan ◽  
Ochanya Ogah ◽  
Juri Kim ◽  
Jaydutt V. Vadgama

Background: Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is associated with cancer progression. Our study examined the role of MALAT1 in breast cancer and the mechanisms involved in the regulation of MALAT1. Methods: In vitro cell and in vivo animal models were used to examine the role of MALAT1 in breast cancer. The interaction of FOXO1 (Forkhead Box O1) at the promoter region of MALAT1 was investigated by chromatin immunoprecipitation (ChIP) assay. Results: The data shows an elevated expression of MALAT1 in breast cancer tissues and cells compared to non-cancer tissues and cells. The highest level of MALAT1 was observed in metastatic triple-negative breast cancer and trastuzumab-resistant HER2 (human epidermal growth factor receptor 2) overexpressing (HER2+) cells. Knockdown of MALAT1 in trastuzumab-resistant HER2+ cells reversed epithelial to mesenchymal transition-like phenotype and cell invasiveness. It improved the sensitivity of the cell’s response to trastuzumab. Furthermore, activation of Akt by phosphorylation was associated with the upregulation of MALAT1. The transcription factor FOXO1 regulates the expression of MALAT1 via the PI3/Akt pathway. Conclusions: We show that MALAT1 contributes to HER2+ cell resistance to trastuzumab. Targeting the PI3/Akt pathway and stabilizing FOXO1 translocation could inhibit the upregulation of MALAT1.


Blood ◽  
2010 ◽  
Vol 116 (20) ◽  
pp. 4288-4296 ◽  
Author(s):  
Magali Pederzoli-Ribeil ◽  
Francesco Maione ◽  
Dianne Cooper ◽  
Adam Al-Kashi ◽  
Jesmond Dalli ◽  
...  

Abstract Human polymorphonuclear leukocytes adhesion to endothelial cells during the early stage of inflammation leads to cell surface externalization of Annexin A1 (AnxA1), an effector of endogenous anti-inflammation. The antiadhesive properties of AnxA1 become operative to finely tune polymorphonuclear leukocytes transmigration to the site of inflammation. Membrane bound proteinase 3 (PR3) plays a key role in this microenvironment by cleaving the N terminus bioactive domain of AnxA1. In the present study, we generated a PR3-resistant human recombinant AnxA1—named superAnxA1 (SAnxA1)—and tested its in vitro and in vivo properties in comparison to the parental protein. SAnxA1 bound and activated formyl peptide receptor 2 in a similar way as the parental protein, while showing a resistance to cleavage by recombinant PR3. SAnxA1 retained anti-inflammatory activities in the murine inflamed microcirculation (leukocyte adhesion being the readout) and in skin trafficking model. When longer-lasting models of inflammation were applied, SAnxA1 displayed stronger anti-inflammatory effect over time compared with the parental protein. Together these results indicate that AnxA1 cleavage is an important process during neutrophilic inflammation and that controlling the balance between AnxA1/PR3 activities might represent a promising avenue for the discovery of novel therapeutic approaches.


2016 ◽  
Vol 37 (5) ◽  
pp. 1871-1882 ◽  
Author(s):  
Raimund Helbok ◽  
Alois Josef Schiefecker ◽  
Christian Friberg ◽  
Ronny Beer ◽  
Mario Kofler ◽  
...  

Pathophysiologic mechanisms of secondary brain injury after intracerebral hemorrhage and in particular mechanisms of perihematomal-edema progression remain incompletely understood. Recently, the role of spreading depolarizations in secondary brain injury was established in ischemic stroke, subarachnoid hemorrhage and traumatic brain injury patients. Its role in intracerebral hemorrhage patients and in particular the association with perihematomal-edema is not known. A total of 27 comatose intracerebral hemorrhage patients in whom hematoma evacuation and subdural electrocorticography was performed were studied prospectively. Hematoma evacuation and subdural strip electrode placement was performed within the first 24 h in 18 patients (67%). Electrocorticography recordings started 3 h after surgery (IQR, 3–5 h) and lasted 157 h (median) per patient and 4876 h in all 27 patients. In 18 patients (67%), a total of 650 spreading depolarizations were observed. Spreading depolarizations were more common in the initial days with a peak incidence on day 2. Median electrocorticography depression time was longer than previously reported (14.7 min, IQR, 9–22 min). Postoperative perihematomal-edema progression (85% of patients) was significantly associated with occurrence of isolated and clustered spreading depolarizations. Monitoring of spreading depolarizations may help to better understand pathophysiologic mechanisms of secondary insults after intracerebral hemorrhage. Whether they may serve as target in the treatment of intracerebral hemorrhage deserves further research.


Sign in / Sign up

Export Citation Format

Share Document