scholarly journals Pomalidomide Reduces Ischemic Brain Injury in Rodents

2019 ◽  
Vol 28 (4) ◽  
pp. 439-450 ◽  
Author(s):  
Yan-Rou Tsai ◽  
David Tweedie ◽  
Ignacio Navas-Enamorado ◽  
Michael T. Scerba ◽  
Cheng-Fu Chang ◽  
...  

Stroke is a leading cause of death and severe disability worldwide. After cerebral ischemia, inflammation plays a central role in the development of permanent neurological damage. Reactive oxygen species (ROS) are involved in the mechanism of post-ischemic inflammation. The activation of several inflammatory enzymes produces ROS, which subsequently suppress mitochondrial activity, leading to further tissue damage. Pomalidomide (POM) is a clinically available immunomodulatory and anti-inflammatory agent. Prior cellular studies demonstrate that POM can mitigate oxidative stress and lower levels of pro-inflammatory cytokines, particularly TNF-α, which plays a prominent role in ischemic stroke-induced brain damage and functional deficits. To evaluate the potential value of POM in cerebral ischemia, POM was initially administered to transgenic mice chronically over-expressing TNF-α surfactant protein (SP)-C promoter (SP-C/TNF-α mice) to assess whether systemically administered drug could lower systemic TNF-α level. POM significantly lowered serum levels of TNF-α and IL-5. Pharmacokinetic studies were then undertaken in mice to evaluate brain POM levels following systemic drug administration. POM possessed a brain/plasma concentration ratio of 0.71. Finally, rats were subjected to transient middle cerebral artery occlusion (MCAo) for 60 min, and subsequently treated with POM 30 min thereafter to evaluate action on cerebral ischemia. POM reduced the cerebral infarct volume in MCAo-challenged rats and improved motor activity, as evaluated by the elevated body swing test. POM’s neuroprotective actions on ischemic injury represent a potential therapeutic approach for ischemic brain damage and related disorders, and warrant further evaluation.

Stroke ◽  
2020 ◽  
Vol 51 (10) ◽  
pp. 3138-3141
Author(s):  
Bharath Chelluboina ◽  
Taehee Kim ◽  
Suresh L. Mehta ◽  
Joo-Yong Kim ◽  
Saivenkateshkomal Bathula ◽  
...  

Background and Purpose: Increased expression of α-Syn (α-Synuclein) is known to mediate secondary brain damage after stroke. We presently studied if α-Syn knockdown can protect ischemic brain irrespective of sex and age. Methods: Adult and aged male and female mice were subjected to transient middle cerebral artery occlusion. α-Syn small interfering RNA (siRNA) was administered intravenous at 30 minutes or 3 hour reperfusion. Poststroke motor deficits were evaluated between day 1 and 7 and infarct volume was measured at day 7 of reperfusion. Results: α-Syn knockdown significantly decreased poststroke brain damage and improved poststroke motor function recovery in adult and aged mice of both sexes. However, the window of therapeutic opportunity for α-Syn siRNA is very limited. Conclusions: α-Syn plays a critical role in ischemic brain damage and preventing α-Syn protein expression early after stroke minimizes poststroke brain damage leading to better functional outcomes irrespective of age and sex.


2002 ◽  
Vol 22 (11) ◽  
pp. 1297-1302 ◽  
Author(s):  
Antonio Cárdenas ◽  
María A. Moro ◽  
Juan C. Leza ◽  
Esther O'Shea ◽  
Antoni Dávalos ◽  
...  

A short ischemic event (ischemic preconditioning [IPC]) can result in a subsequent resistance to severe ischemic injury (ischemic tolerance [IT]). Although tumor necrosis factor-α (TNF-α) contributes to the brain damage, its expression and neuroprotective role in models of IPC have also been described. However, the role of TNF-α convertase (TACE) in IPC and IT is not known. Using in vitro models, the authors previously demonstrated that TACE is upregulated after ischemic brain damage. In the present study, the authors used a rat model of transient middle cerebral artery occlusion as IPC to investigate TACE expression, its involvement in TNF-α release, and its role in IT. Western blot analysis showed that TACE expression is increased after IPC. Ischemic preconditioning caused TNF-α release, an effect that was blocked by the selective TACE inhibitor BB-1101 (10 mg · kg−1 · day−1; SHAM, 1,050 ± 180; IPC, 1,870 ± 290; IPC + BB, 1,320 ± 260 ng/mg; n = 4, P < 0.05). Finally, IPC produced a reduction in infarct volume, which was inhibited by treatment with BB-1101 and with anti–TNF-α (10 μg/5 doses; SHAM + permanent middle cerebral artery occlusion [pMCAO], 335 ± 20; IPC + pMCAO, 244 ± 14; IPC + BB + pMCAO, 300 ± 6; IPC + anti-TNF + pMCAO, 348 ± 22 mm3; n = 6–10, P < 0.05). Taken together, these data demonstrate that TACE is upregulated after IPC, plays a major role in TNF-α shedding in IPC, and has a neuroprotective role in IT.


2022 ◽  
Vol 66 (1) ◽  
Author(s):  
Rong Tian ◽  
Gengsheng Mao

The purpose of this study was to investigate the effect of Ghrelin on the polarization of microglia/ macrophages after cerebral ischemia (CI) in rats. 60 wild-type SD rats were randomly divided into sham group, CI group, CI+Ghrelin group, 20 rats in each group. The modified Longa suture method was used to establish the middle cerebral artery occlusion (MCAO) model in rats. Before surgery, Ghrelin was injected subcutaneously (100μg/kg, twice a day) for 4 consecutive weeks. After modeling, neurological function scores were performed with three behavioral experiments: mNSS score, Corner test, and Rotarod test, to evaluate the recovery of neurological function after Ghrelin treatment. At the same time, the brain tissues were collected and stained with 2,3,5-triphenyltetrazolium chloride (TTC) to detect the cerebral infarct volume. RT-qPCR was used to detect the expression of TNF-α and IL-1β in the ischemic brain tissue, and the TUNEL staining was used to detect the apoptosis of brain tissue. Flow cytometry was used to detect the percentage of M1 type microglia/macrophages which were isolated by trypsin digestion of fresh cerebral cortex. Then, the Western blotting and immunofluorescence method were used to detect the phosphorylation level of AKT (P-AKT) and AKT. Compared with the CI group, the neurological function of the rats in the CI+Ghrelin group was dramatically improved, and the cerebral infarction area was dramatically reduced. At the same time, the expression of TNF-α and IL-1β in the ischemic brain tissue of rats in the CI+Ghrelin group decreased, and the apoptotic cells in the brain tissue also decreased. Compared with the CI treatment group, the activation of M1 microglia/macrophages in the cortex of the ischemic side of the infarct and the peri-infarct area in the CI+Ghrelin group was dramatically inhibited. At the same time, the ratio of P-AKT/AKT of the brain tissue in the CI+Ghrelin group was dramatically higher than that of the CI group. In the rat cerebral ischemia model, Ghrelin can promote the repair of brain damage and the recovery of neurological function after ischemia. Its mechanism may be related to activating AKT to selectively reduce M1 microglia/macrophages, reducing inflammation and cell apoptosis in brain tissue.


2017 ◽  
Vol 38 (6) ◽  
pp. 1060-1069 ◽  
Author(s):  
Abraham Cisneros-Mejorado ◽  
Miroslav Gottlieb ◽  
Asier Ruiz ◽  
Juan C Chara ◽  
Alberto Pérez-Samartín ◽  
...  

Overactivation of purinergic receptors during cerebral ischemia results in a massive release of neurotransmitters, including adenosine triphosphate (ATP), to the extracellular space which leads to cell death. Some hypothetical pathways of ATP release are large ion channels, such as calcium homeostasis modulator 1 (CALHM1), a membrane ion channel that can permeate ATP. Since this transmitter contributes to postischemic brain damage, we hypothesized that CALHM1 activation may be a relevant target to attenuate stroke injury. Here, we analyzed the contribution of CALHM1 to postanoxic depolarization after ischemia in cultured neurons and in cortical slices. We observed that the onset of postanoxic currents in neurons in those preparations was delayed after its blockade with ruthenium red or silencing of Calhm1 gene by short hairpin RNA, as well as in slices from CALHM1 knockout mice. Subsequently, we used transient middle cerebral artery occlusion and found that ruthenium red, a blocker of CALHM1, or the lack of CALHM1, substantially attenuated the motor symptoms and reduced significantly the infarct volume. These results show that CALHM1 channels mediate postanoxic depolarization in neurons and brain damage after ischemia. Therefore, targeting CALHM1 may have a high therapeutic potential for treating brain damage after ischemia.


2018 ◽  
Vol 125 (1) ◽  
pp. 49-57 ◽  
Author(s):  
Chun Li ◽  
Hong Sun ◽  
Guodong Xu ◽  
Kimberly D. McCarter ◽  
Jiyu Li ◽  
...  

Nicotine may contribute to the pathogenesis of cerebrovascular disease via the generation of reactive oxygen species (ROS). Overproduction of ROS leads to brain damage by intensifying postischemic inflammation. Our goal was to determine the effect of Mito-Tempo, a mitochondria-targeted antioxidant, on ischemic brain damage and postischemic inflammation during chronic exposure to nicotine. Male Sprague-Dawley rats were divided into four groups: control, nicotine, Mito-Tempo-treated control, and Mito-Tempo-treated nicotine. Nicotine (2 mg·kg−1·day−1) was administered via an osmotic minipump for 4 wk. Mito-Tempo (0.7 mg·kg−1·day−1ip) was given for 7 days before cerebral ischemia. Transient focal cerebral ischemia was induced by occlusion of the middle cerebral artery for 2 h. Brain damage and inflammation were evaluated after 24 h of reperfusion by measuring infarct volume, expression of adhesion molecules, activity of matrix metalloproteinase, brain edema, microglial activation, and neutrophil infiltration. Nicotine exacerbated infarct volume and worsened neurological deficits. Nicotine did not alter baseline ICAM-1 expression, matrix metallopeptidase-2 activity, microglia activation, or neutrophil infiltration but increased these parameters after cerebral ischemia. Mito-Tempo did not have an effect in control rats but prevented the chronic nicotine-induced augmentation of ischemic brain damage and postischemic inflammation. We suggest that nicotine increases brain damage following cerebral ischemia via an increase in mitochondrial oxidative stress, which, in turn, contributes to postischemic inflammation.NEW & NOTEWORTHY Our findings have important implications for the understanding of mechanisms contributing to increased susceptibility of the brain to damage in smokers and users of nicotine-containing tobacco products.


2018 ◽  
Vol 27 (12) ◽  
pp. 1744-1752 ◽  
Author(s):  
Poornima Venkat ◽  
Tao Yan ◽  
Michael Chopp ◽  
Alex Zacharek ◽  
Ruizhuo Ning ◽  
...  

Angiopoietin-1 (Ang1) mediates vascular maturation and immune response. Diabetes decreases Ang1 expression and disrupts Ang1/Tie2 signaling activity. Vasculotide is an Ang1 mimetic peptide, and has anti-inflammatory effects. In this study, we test the hypothesis that vasculotide treatment induces neuroprotection and decreases inflammation after stroke in type 1 diabetic (T1DM) rats. T1DM rats were subjected to embolic middle cerebral artery occlusion (MCAo) and treated with: 1) phosphate buffered saline (PBS); 2) vasculotide (3µg/kg, i.p. injection) administered half an hour prior to MCAo and at 8 and 24 hours after MCAo. Rats were sacrificed at 48 h after MCAo. Neurological function, infarct volume, hemorrhage, blood brain barrier (BBB) permeability and neuroinflammation were measured. Vasculotide treatment of T1DM-MCAo rats significantly improves functional outcome, decreases infarct volume and BBB permeability, but does not decrease brain hemorrhagic transformation compared with PBS-treated T1DM-MCAo rats. In the ischemic brain, Vasculotide treatment significantly decreases apoptosis, number of cleaved-caspase-3 positive cells, the expression of monocyte chemotactic protein-1 (MCP-1) and tumor necrosis factor (TNF-α). Western blot analysis shows that vasculotide significantly decreases expression of receptor for advanced glycation end products (RAGE), MCP-1 and TNF-α in the ischemic brain compared with T1DM-MCAo rats. Vasculotide treatment in cultured primary cortical neurons (PCN) significantly decreases TLR4 expression compared with control. Decreased neuroinflammation and reduced BBB leakage may contribute, at least in part, to vasculotide-induced neuroprotective effects after stroke in T1DM rats.


2003 ◽  
Vol 23 (5) ◽  
pp. 531-535 ◽  
Author(s):  
Rachel D. Wheeler ◽  
Herve Boutin ◽  
Omar Touzani ◽  
Giamal N. Luheshi ◽  
Kiyoshi Takeda ◽  
...  

There is now extensive evidence to show that the cytokine interleukin-1 (IL-1) contributes directly to reversible and permanent ischemic brain damage in rodents. Because interleukin-18 (IL-18) shares many structural and functional similarities with IL-1, the authors tested the hypothesis that IL-18 contributes directly to ischemic brain damage in mice exposed to focal, reversible (15-minute or 30-minute) middle cerebral artery occlusion. IL-18 expression was not induced acutely by middle cerebral artery occlusion, and deletion of the IL-18 gene (IL-18 knockout mice) did not affect infarct volume. The present results suggest that IL-18 does not contribute to acute ischemic brain damage.


1997 ◽  
Vol 17 (6) ◽  
pp. 597-604 ◽  
Author(s):  
R. Paul Stroemer ◽  
Nancy J. Rothwell

Interleukin-1 (IL-1) receptor antagonist (IL-1ra) markedly reduces infarct volume induced by middle cerebral artery occlusion (MCAO) in the rat, when injected either centrally (intracerebroventricularly) or peripherally. The site or sites of action of IL-1 in stroke pathology, however, are not known. The present study investigated the site(s) of action of IL-1/IL-1ra in ischemic brain damage by studying the effects of local injection of IL-1ra into the cortex or striatum following permanent MCAO in the rat. Cortical injection of IL-1ra (5 µg) did not affect infarct volume in the cortex or striatum measured 24 h after MCAO. In contrast, striatal injection of IL-1ra ipsilateral to the infarction caused a significant and highly reproducible reduction of cortical (37%, p < 0.001) and striatal damage (27%, p < 0.001, corrected for edema) compared with vehicle-injected animals. Injection of IL-1ra (5 µg) into the striatum, contralateral to the infarction, resulted in a small (9%) but significant (p < 0.001) reduction of ipsilateral cortical damage, with no effect on ipsilateral striatal damage. Injection of a higher dose of IL-1ra (7.5 µg) in the contralateral striatum caused a further inhibition of ipsilateral cortical damage (24%, p < 0.001) and a significant reduction of ipsilateral striatal damage (16%, p < 0.001). In separate groups of rats, it was established that core temperature (measured continuously in free-moving animals with remote radiotelemetry) was not affected by striatal or cortical injection of IL-1ra. These data show that injection of IL-1ra into the striatum but not the cortex reduces infarct volume in both the striatum and the cortex, independently of effects on core temperature. These results imply that blocking striatal IL-1 contributes to IL-1ra-protective effects. We hypothesize that IL-1 may influence striatal distal cortical damage through either the release of specific substances or activation of polysynaptic pathways.


1990 ◽  
Vol 10 (1) ◽  
pp. 89-96 ◽  
Author(s):  
Michael Jacewicz ◽  
Steve Brint ◽  
Jody Tanabe ◽  
William A. Pulsinelli

Focal cerebral infarction and edema were measured in rats (Wistar, Fisher 344, and spontaneously hypertensive strains) pretreated with nimodipine (2 μg/kg/min i.v.) or its vehicle and subjected to the tandem occlusion of the middle cerebral and common carotid arteries. Animals awoke from anesthesia 10–15 min after onset of ischemia and continued to receive treatment over a 24-h survival period. Cortical infarction and edema were quantified by image analysis of frozen brain sections processed for histology. Nimodipine-treated rats developed 20–60% smaller cortical infarct volumes than controls (p < 0.002). Cortical edema was reduced proportionately to the decrease in infarct volume and constituted ∼36% of the infarct volume. Nimodipine caused a mild hypotensive response that did not aggravate ischemic brain damage. The results indicate that continuous nimodipine treatment, started before induction of focal cerebral ischemia, can attenuate ischemic brain damage and edema as late as 24 h after the onset of ischemia.


1994 ◽  
Vol 14 (4) ◽  
pp. 537-544 ◽  
Author(s):  
Raymond T. Bartus ◽  
Keith L. Baker ◽  
Angie D. Heiser ◽  
Sean D. Sawyer ◽  
Reginald L. Dean ◽  
...  

Experiments were conducted to determine whether a potent, reversible calpain inhibitor could reduce the cortical ischemic brain damage associated with focal ischemia in the rat. AK275 (Z-Leu–Abu–CONH–CH2CH3), the active isomer of the diastereomeric mixture, CX275, was employed in conjunction with a novel method of perfusing drug directly onto the infarcted cortical surface. This protocol reduced or eliminated numerous, nonspecific pharmacokinetic, hemodynamic, and other potentially confounding variables that might complicate interpretation of any drug effect. Focal ischemia was induced using a variation of the middle cerebral artery occlusion method. These studies demonstrated a reliable and robust neuroprotective effect of AK275 over the concentration range of 10 to 200 μ M (perfused supracortically at 4 μl/h for 21 h). Moreover, a 75% reduction in infarct volume was observed when initiation of drug treatment was delayed for 3 h postocclusion. Our data further support an important role of calpain in ischemia-induced neuropathology and suggest that calpain inhibitors may provide a unique and potentially powerful means of treating stroke and other ischemic brain incidents.


Sign in / Sign up

Export Citation Format

Share Document