scholarly journals Long Noncoding RNA LINC00460 Promotes Cell Progression by Sponging miR-4443 in Head and Neck Squamous Cell Carcinoma

2020 ◽  
Vol 29 ◽  
pp. 096368972092740 ◽  
Author(s):  
Meng Li ◽  
Xiaomin Zhang ◽  
Xu Ding ◽  
Yang Zheng ◽  
Hongming Du ◽  
...  

Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers worldwide. Long noncoding RNAs were proved to be associated with the development and progression in HNSCC. However, the mechanism of LINC00460 in HNSCC needs to be further investigated. The study used quantitative real-time polymerase chain reaction assay to detect the expression of LINC00460 in cancer tissues and cell lines. Gain and loss of function experiments were conducted to analyze the effects of LINC00460 and miR-4443 on cell proliferation, invasion, and apoptosis of HNSCC cells in vitro. The interactions among miR-4443 and LINC00460 were detected by dual-luciferase reporter assay. Here, the study showed that LINC00460 was highly expressed in HNSCC tissues and cell lines. Functionally, knockdown of LINC00460 inhibited HNSCC cell proliferation and migration in vitro. Besides, LINC00460 promoted cell progression by sponging miR-4443, and miR-4443 inhibitor could reverse the effects of si-LINC00460 on cell proliferation and migration. In summary, LINC00460 could potentially promote cell progression and epithelial mesenchymal transition by sponging miR-4443 in HNSCC. LINC00460 could be used as a potential therapeutic target for HNSCCs.

2021 ◽  
Vol 22 (6) ◽  
pp. 3046
Author(s):  
Ming-Huei Chou ◽  
Hui-Ching Chuang ◽  
Yu-Tsai Lin ◽  
Ming-Hsien Tsai ◽  
Ying-Hsien Kao ◽  
...  

Patients with advanced head and neck squamous cell carcinoma (HNSCC) usually show a dismal prognosis. It is this worthwhile to develop new, effective therapeutic regimens for these patients, such as molecular targeted therapy, which is promising as an alternative or combination treatment for HNSCC. The mammalian target of rapamycin (mTOR) pathway, which plays an important role in the carcinogenesis of HNSCC, is the most frequently activated, and is thus worthy of further investigation. In this study, two human HNSCC cell lines, FaDu and SAS, were evaluated for cell growth with trypan blue staining and tumor growth using an orthotopic xenograft model. The immunohistochemical expression of mTOR in the subcutaneous xenograft model and the inhibitory effects of docetaxel on the growth and state of activation of the PI3K/mTOR pathway were also evaluated and examined by colony formation and Western blot, respectively. Cell proliferation and migration were measured by water-soluble tetrazolium salt (WST-1) and OrisTM cell migration assay, respectively. Furthermore, the effects of rapamycin and BEZ235, a phosphatidylinositol 3-kinases (PI3K) and mTOR inhibitor in combination with docetaxel or CCL20 were evaluated in the FaDu and SAS cells. The results showed that the expression of mTOR was significantly higher in the SAS and FaDu xenograft models than in the control. Docetaxel treatment significantly suppressed HNSCC cell proliferation and migration in vitro via the PI3K/mTOR/CCL-20 signaling pathway. Additionally, when administered in a dose-dependent fashion, mTOR inhibitors inhibited the growth and migration of the HNSCC cells. This combination was synergistic with docetaxel, resulting in almost complete cell growth and migration arrest. In conclusion, docetaxel significantly inhibited HNSCC cell proliferation and migration in vitro via the PI3K/mTOR/CCL-20 signaling pathway. The synergistic and additive activity of mTOR inhibitors combined with docetaxel shows potential as a new treatment strategy for HNSCC.


Sign in / Sign up

Export Citation Format

Share Document