scholarly journals Non-Destructive Identification of Spherical Inclusions

2000 ◽  
Vol 9 (1) ◽  
pp. 096369350000900
Author(s):  
Maria Hadjinicolaou

Small coated particles and especially small coated spheres, are fundamental units in a particular class of composite materials. The physical characteristics of the core of a particle can be identified through low frequency inverse scattering techniques, in a completely non-destructive manner. Using point source, as well as, plane wave excitation, it can be identified whether the core is consisted of an acoustically soft, hard, or resistive kernel, or if it is a penetrable body having different physical characteristics from that of the coating material. Furthermore, the thickness of the shell can be evaluated assuming the physical parameters (two different densities of the two spheres) are known. Otherwise, if the thickness of the shell is known, the density ratio of the two media can be obtained from one single measurement. Consequently, the density of the core can be found when the density of the shell is known and vice versa.

2019 ◽  
Vol 631 ◽  
pp. A49 ◽  
Author(s):  
A. Kappes ◽  
M. Perucho ◽  
M. Kadler ◽  
P. R. Burd ◽  
L. Vega-García ◽  
...  

Context. The emission and proper motion of the terminal hotspots of active galactic nucleus (AGN) jets can be used as a powerful probe of the intergalactic medium. However, measurements of hotspot advance speeds in active galaxies are difficult, especially in the young universe, because of the low angular velocities and the low brightness of distant radio galaxies. Aims. Our goal is to study the termination of an AGN jet in the young universe and to deduce physical parameters of the jet and the intergalactic medium. Methods. We used the LOw Frequency ARray (LOFAR) to image the long-wavelength radio emission of the high-redshift blazar S5 0836+710 on arcsecond scales between 120 MHz and 160 MHz. Results. The LOFAR image shows a compact unresolved core and a resolved emission region about 1.5 arcsec to the southwest of the radio core. This structure is in general agreement with previous higher-frequency radio observations with the Multi-Element Radio-Linked Interferometer Network (MERLIN) and the Very Large Array (VLA). The southern component shows a moderately steep spectrum with a spectral index of about ≳ − 1, and the spectral index of the core is flat to slightly inverted. In addition, we detect for the first time a resolved steep-spectrum halo with a spectral index of about −1 surrounding the core. Conclusions. The arcsecond-scale radio structure of S5 0836+710 can be understood as a Faranoff–Riley (FR) II radio galaxy observed at a small viewing angle. The southern component can be interpreted as the region of the approaching jet’s terminal hotspot, and the halo like diffuse component near the core can be interpreted as the counter-hotspot region. From the differential Doppler boosting of both features, we can derive the hotspot advance speed to (0.01 − 0.036) c. At a constant advance speed, the derived age of the source would exceed the total lifetime of such a powerful FR II radio galaxy substantially. Thus, the hotspot advance speed must have been higher in the past, in agreement with a scenario in which the originally highly relativistic jet has lost collimation as a result of instability growth and has transformed into an only mildly relativistic flow. Our data suggest that the density of the intergalactic medium around this distant (z = 2.22) AGN could be substantially higher than the values typically found in less distant FR II radio galaxies.


2012 ◽  
Vol 39 (11) ◽  
pp. 813 ◽  
Author(s):  
Roland Pieruschka ◽  
Hendrik Poorter

No matter how fascinating the discoveries in the field of molecular biology are, in the end it is the phenotype that matters. In this paper we pay attention to various aspects of plant phenotyping. The challenges to unravel the relationship between genotype and phenotype are discussed, as well as the case where ‘plants do not have a phenotype’. More emphasis has to be placed on automation to match the increased output in the molecular sciences with analysis of relevant traits under laboratory, greenhouse and field conditions. Currently, non-destructive measurements with cameras are becoming widely used to assess plant structural properties, but a wider range of non-invasive approaches and evaluation tools has to be developed to combine physiologically meaningful data with structural information of plants. Another field requiring major progress is the handling and processing of data. A better e-infrastructure will enable easier establishment of links between phenotypic traits and genetic data. In the final part of this paper we briefly introduce the range of contributions that form the core of a special issue of this journal on plant phenotyping.


2017 ◽  
Vol 10 (6) ◽  
pp. 1182-1191
Author(s):  
L. S. SALLES ◽  
J. T. BALBO ◽  
L. KHAZANOVICH

Abstract In recent years, due to the destructive and unproductive character of pavement specimen extraction, pavement maintenance technology intensified the use of non-destructive techniques for pavement evaluation which resulted in the development of several devices and evaluation methods. This paper describes the use of technology based on low frequency ultrasonic tomography for evaluation of concrete pavement parameters. The equipment was applied in three experimental sections with different concrete pavements built at the University of Sao Paulo campus. The ultrasonic signal processing is given. The results analysis enables the efficient and reliable identification of thickness and reinforcement position within the concrete slab. Construction problems were evidenced in one of experimental sections with thickness deficiencies and reinforcement in a position below projected. Furthermore, the use of a novel concrete quality indicator was correlated with the presence of transverse cracks and alkali-silica reaction within the sections.


2007 ◽  
Vol 3 (S248) ◽  
pp. 66-73
Author(s):  
J.-E. Arlot

AbstractThe main goal of the astrometry of solar system objects is to build dynamical models of their motions to understand their evolution, to determine physical parameters and to build accurate ephemerides for the preparation and the exploitation of space missions. For many objects, the ground-based observations are still very important because radar or observations from space probes are not available. More, the need of observations on a long period of time makes the ground-based observations necessary. The solar system objects have very different characteristics and the increase of the astrometric accuracy will depend on the objects and on their physical characteristics. The purpose of this communication is to show how to get the best astrometric accuracy.


Author(s):  
M. Azeredo ◽  
◽  
V. Priimenko ◽  

This work presents a mathematical algorithm for modeling the propagation of poroelastic waves. We have shown how the classical Biot equations can be put into Ursin’s form in a plane-layered 3D porous medium. Using this form, we have derived explicit for- mulas that can be used as the basis of an efficient computational algorithm. To validate the algorithm, numerical simulations were performed using both the poroelastic and equivalent elastic models. The results obtained confirmed the proposed algorithm’s reliability, identify- ing the main wave events in both low-frequency and high-frequency regimes in the reservoir and laboratory scales, respectively. We have also illustrated the influence of some physical parameters on the attenuation and dispersion of the slow wave.


Author(s):  
Fun Pang Chau ◽  
Ronald W. Yeung

The method of matched eigenfunction expansions is applied in this paper to obtain the hydrodynamic coefficients of a pair of coaxial cylinders, each of which can have independent movement. The geometry idealizes a device for extracting ocean wave energy in the heave mode. The effects of geometric variations and the interaction between cylinders on the hydrodynamic properties are discussed. Analytical expressions for the low-frequency behavior of the hydrodynamic coefficients are also derived. The wave-exciting force on the bottom surface of either one of the cylinders is derived using the radiation solutions, with a generalized form of the Haskind relation developed for this geometry. The presented results are immediately applicable to examine free motion of coaxial cylinders in a wave field.


2021 ◽  
Vol 26 (4) ◽  
pp. 314-325
Author(s):  
S. V. Stepkin ◽  
◽  
O. O. Konovalenko ◽  
Y. V. Vasylkivskyi ◽  
D. V. Mukha ◽  
...  

Purpose: The analytical review of the main results of research in the new direction of the low-frequency radio astronomy, the interstellar medium radio spectroscopy at decameter waves, which had led to astrophysical discovery, recording of the radio recombination lines in absorption for highly excited states of interstellar carbon atoms (more than 600). Design/methodology/approach: The UTR-2 world-largest broadband radio telescope of decameter waves optimally connected with the digital correlation spectrum analyzers has been used. Continuous modernization of antenna system and devices allowed increasing the analysis band from 100 kHzto 24 MHz and a number of channels from 32 to 8192. The radio telescope and receiving equipment with appropriate software allowed to have a long efficient integration time enough for a large line series simultaneously with high resolution, noise immunity and relative sensitivity. Findings: A new type of interstellar spectral lines has been discovered and studied, the interstellar carbon radio recombination lines in absorption for the record high excited atoms with principal quantum numbers greater than 1000. The line parameters (intensity, shape, width, radial velocity) and their relation ship with the interstellar medium physical parameters have been determined. The temperature of line forming regions is about 100 K, the electron concentration up to 0.1 cm–3 and the size of a line forming region is about 10 pc. For the first time, radio recombination lines were observed in absorption. They have significant broadening and are amplified by the dielectronic-like recombination mechanism and are also the lowest frequency lines in atomic spectroscopy. Conclusions: The detected low-frequency carbon radio recombination lines and their observations have become a new highly effective tool for the cold partially ionized interstellar plasma diagnostics. Using them allows obtaining the information which is not available with the other astrophysical methods. For almost half a century of their research, a large amount of hardware-methodical and astrophysical results have been obtained including a record number of Galaxy objects, where there levant lines have been recorded. The domestic achievements have stimulated many theoretical and experimental studies in other countries, but the scientific achievements of Ukrainian scientists prove the best prospects for further development of this very important area of astronomical science. Key words: low-frequency radio astronomy; radio telescope; interstellar medium; radio recombination lines; carbon; hydrogen; spectral analyzer


The combined effect of various parameters of gravity modulation on the onset of ferroconvection is studied for both linear and non-linear stability. The effect of various parameters of ferroconvection is studied for linear stability analysis. The resulting seven-mode generalized Lorenz model obtained in non-linear stability analysis is solved using Runge -Kutta-Felberg 45 method to analyze the heat transfer. Consequently the individual effect of gravity modulation on heat transport has been investigated. Further, the effect of physical parameters on heat transport has been analyzed and depicted graphically. The low-frequency gravity modulation is observed to get an effective influence on the stability of the system. Therefore ferro convection can be advanced or delayed by controlling different governing parameters. It shows that the influence of gravity modulation stabilizes system.


Author(s):  
Satenik Harutyunyan ◽  
Davresh Hasanyan

A non-linear theoretical model including bending and longitudinal vibration effects was developed for predicting the magneto electric (ME) effects in a laminate bar composite structure consisting of magnetostrictive and piezoelectric multi-layers. If the magnitude of the applied field increases, the deflection rapidly increases and the difference between experimental results and linear predictions becomes large. However, the nonlinear predictions based on the present model well agree with the experimental results within a wide range of applied electric field. The results of the analysis are believed to be useful for materials selection and actuator structure design of actuator in actuator fabrication. It is shown that the problem for bars of symmetrical structure is not divided into a plane problem and a bending problem. A way of simplifying the solution of the problem is found by an asymptotic method. After solving the problem for a laminated bar, formula that enable one to change from one-dimensional required quantities to three dimensional quantities are obtained. The derived analytical expression for ME coefficients depend on vibration frequency and other geometrical and physical parameters of laminated composites. Parametric studies are presented to evaluate the influences of material properties and geometries on strain distribution and the ME coefficient. Analytical expressions indicate that the vibration frequency strongly influences the strain distribution in the laminates, and that these effects strongly influence the ME coefficients. It is shown that for certain values of vibration frequency (resonance frequency), the ME coefficient becomes infinity; as a particular case, low frequency ME coefficient were derived as well.


Sign in / Sign up

Export Citation Format

Share Document