scholarly journals Estimation of Initial Debonding Stress in Adhesive Structure between Concrete and Composites

1996 ◽  
Vol 5 (3) ◽  
pp. 096369359600500
Author(s):  
Atsushi Yokoyama ◽  
Akihiro Fujita ◽  
Shigeo Urai ◽  
Hiroyuki Hamada

This paper describe a numerical analysis using finite element method(FEM) to investigate effects of composite material on repairing of concrete structures. The numerical results were in good agreement with the experimental data. Particularly, bonding strength between composite materials and concrete was investigated.

2012 ◽  
Vol 499 ◽  
pp. 243-247
Author(s):  
Long Hai Yan ◽  
Bao Liang Liu

This note is specifically concerned with cracks emanating from a quarter-spherical cavity on the edge in an elastic body (see Fig.1) by using finite element method. The numerical results show that the existence of the cavity has a shielding effect of the corner crack. In addition, it is found that the effect of boundaries parallel to the crack on the SIFs is obvious when.H/R≤3


1967 ◽  
Vol 2 (3) ◽  
pp. 239-245 ◽  
Author(s):  
M J Iremonger ◽  
W G Wood

An investigation has been made into the suitability of the finite-element method for studying the stresses in composite materials and the case of a single broken fibre in a matrix has been examined. It has been found that high stress concentrations occur in the region of the fibre break which increase with decreasing end gap and would cause matrix yielding or fracture at comparatively low overall stresses. When the end gap is not void but filled with matrix much lower stress concentrations occur which, below a certain value of end gap, actually decrease as the gap is made smaller.


2012 ◽  
Vol 446-449 ◽  
pp. 3229-3232
Author(s):  
Chao Jiang Fu

The finite element modeling is established for reinforced concrete(RC) beam reinforced with fiber reinforced polymer (FRP) using the serial/parallel mixing theory. The mixture algorithm of serial/parallel rule is studied based on the finite element method. The results obtained from the finite element simulation are compared with the experimental data. The comparisons are made for load-deflection curves at mid-span. The numerical analysis results agree well with the experimental results. Numerical results indicate that the proposed procedure is validity.


2012 ◽  
Vol 461 ◽  
pp. 93-96
Author(s):  
Xiao Jun Yuan ◽  
Li Chen ◽  
Jian Hua Wu ◽  
Jing Xin Tang

Much effort has been devoted to studying the blast properties of masonry infilled panels due to recent increasing accidental blast events. In this paper, the blast properties of the masonry infilled walls were analyzed with the finite element program LS-DYNA by the way of distinctive consideration of the bricks and mortar material in contrast to the experimental data. The numerical results have a good agreement with experimental data. The reliability and efficiency of this method in predicting the dynamic responses of masonry walls to blast loads was proven.


2011 ◽  
Vol 70 ◽  
pp. 399-404
Author(s):  
Wei Chung Wang ◽  
Ting Ying Wu

In this paper, the electronic speckle pattern interferometry (ESPI) and the finite element method (FEM) were used to obtain the thermal deformation induced in a centrally supported thermoelectric cooler (TEC). The results of ESPI and FEM are in good agreement and show that the warpage varies linearly with respect to the temperature difference between the two ceramic plates inside the TEC.


2020 ◽  
Vol 24 (4) ◽  
pp. 2385-2391
Author(s):  
Ya-Ping Li ◽  
Li-Li Wang ◽  
Jie Fan

Fluids in porous media driven by the capillary force are greatly affected by capillary?s geometrical structure. The steady flow in a non-uniform capillary is numerically analyzed by the finite element method. With the given initial and boundary conditions, the flow velocity distribution with different geometrical parameters is obtained, and the result is in a good agreement with the experimental data.


2011 ◽  
Vol 33 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Nguyen Tien Khiem ◽  
Tran Thanh Hai

Rayleigh's quotient for Euler-Bernoulli multiple cracked beam with different boundary conditions has been derived from the governed equation of free vibration. An appropriate choosing of approximate shape function in terms of mode shape of uncracked beam and specific functions satisfying conditions at cracks and boundaries leads to an explicit expression of natural frequencies through crack parameters that can simplify not only the analysis of natural frequencies of cracked beam but also the crack detection problem. Numerical analysis of natural frequencies of the cracked beam by using the obtained expression in comparison with the well-known methods such as the characteristic equation and finite element method shows their good agreement. The analytical expression of natural frequencies applied to the crack detection problem allows the result of detection to be improved.


1992 ◽  
Vol 20 (4) ◽  
pp. 230-253 ◽  
Author(s):  
T. Akasaka ◽  
K. Kabe ◽  
M. Koishi ◽  
M. Kuwashima

Abstract The deformation behavior of a tire in contact with the roadway is complicated, in particular, under the traction and braking conditions. A tread rubber block in contact with the road undergoes compression and shearing forces. These forces may cause the loss of contact at the edges of the block. Theoretical analysis based on the energy method is presented on the contact deformation of a tread rubber block subjected to compressive and shearing forces. Experimental work and numerical calculation by means of the finite element method are conducted to verify the predicted results. Good agreement is obtained among these analytical, numerical, and experimental results.


2017 ◽  
Vol 54 (2) ◽  
pp. 195-202
Author(s):  
Vasile Nastasescu ◽  
Silvia Marzavan

The paper presents some theoretical and practical issues, particularly useful to users of numerical methods, especially finite element method for the behaviour modelling of the foam materials. Given the characteristics of specific behaviour of the foam materials, the requirement which has to be taken into consideration is the compression, inclusive impact with bodies more rigid then a foam material, when this is used alone or in combination with other materials in the form of composite laminated with various boundary conditions. The results and conclusions presented in this paper are the results of our investigations in the field and relates to the use of LS-Dyna program, but many observations, findings and conclusions, have a general character, valid for use of any numerical analysis by FEM programs.


Sign in / Sign up

Export Citation Format

Share Document