Gas Sensing Materials from Carbon Black/Poly(Methyl Methacrylate) Composites

2003 ◽  
Vol 11 (4) ◽  
pp. 291-299 ◽  
Author(s):  
Xian Ming Dong ◽  
Ruo Wen Fu ◽  
Ming Qiu Zhang ◽  
Bin Zhang ◽  
Jun Rong Li ◽  
...  

In this work, the electrical conductivity of carbon black/poly(methyl methacrylate) composites and its responsiveness to organic solvent vapors were investigated. The carbon black-polymer conducting composites were synthesized by in-situ polymerization. They exhibited a low electrical percolation threshold (~3.3wt% of carbon black). The electric resistance of the composites increased drastically by over 104 times when they were exposed to good solvent vapours such as chloroform, tetrahydrafuran and ethyl acetate, and it recovered when the composites were transferred to air. The effect of temperature on the vapour responsivity of the composites was notable. An elevated temperature accelerated the vapour-induced variation in electrical resistance of the composites. The experimental data also indicate that the composites possessed a good reproducibility of vapour responsivity. These results suggest that they can be regarded as promising gas sensors characterized by easy processability and cost effectiveness.

Carbon ◽  
2011 ◽  
Vol 49 (8) ◽  
pp. 2615-2623 ◽  
Author(s):  
Jeffrey R. Potts ◽  
Sun Hwa Lee ◽  
Todd M. Alam ◽  
Jinho An ◽  
Meryl D. Stoller ◽  
...  

Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2747 ◽  
Author(s):  
Lisa Muñoz ◽  
Laura Tamayo ◽  
Miguel Gulppi ◽  
Franco Rabagliati ◽  
Marcos Flores ◽  
...  

An experimental protocol was studied to improve the adhesion of a polymeric poly(methyl methacrylate) coating that was modified with silver nanoparticles to an aluminum alloy, AA2024. The nanoparticles were incorporated into the polymeric matrix to add the property of inhibiting biofilm formation to the anticorrosive characteristics of the film, thus also making the coating antibiocorrosive. The protocol consists of functionalizing the surface through a pseudotransesterification treatment using a methyl methacrylate monomer that bonds covalently to the surface and leaves a terminal double bond that promotes and directs the polymerization reaction that takes place in the process that follows immediately after. This results in more compact and thicker poly(methyl methacrylate) (PMMA) coatings than those obtained without pseudotransesterification. The poly(methyl methacrylate) matrix modified with nanoparticles was obtained by incorporating both the nanoparticles and the methyl methacrylate in the reactor. The in situ polymerization involved combining the pretreated AA2024 specimens combined with the methyl methacrylate monomer and AgNps. The antibiofilm capacity of the coating was evaluated against P. aeruginosa, with an excellent response. Not only did the presence of bacteria decrease, but the formation of the exopolymer subunits was 99.99% lower than on the uncoated aluminum alloy or the alloy coated with unmodified poly(methyl methacrylate). As well and significantly, the potentiodynamic polarization measurements indicate that the PMMA-Ag coating has a good anticorrosive property in a 0.1-M NaCl medium.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Jiale Song ◽  
Jiaoxia Zhang ◽  
Chunling Lin

The graphene oxide (GO) was obtained by Hummers' method using natural graphite as raw materials. Then, the GO/poly(methyl methacrylate) (PMMA) nanocomposites were prepared by in situ polymerization. The tribological and electrical properties of nanocomposites were studied. As a result, the frictional coefficient of GO/PMMA nanocomposites was prominently improved with the content of the graphene oxide increasing. The electrical properties of nanocomposites were slightly increased when adding the graphene oxide.


RSC Advances ◽  
2016 ◽  
Vol 6 (14) ◽  
pp. 11419-11429 ◽  
Author(s):  
Mohammad Dinari ◽  
Gholamhossein Mohammadnezhad ◽  
Roozbeh Soltani

Novel mesoporous silica nanocomposites for adsorption of Cu(ii) from aqueous solution were prepared by in situ polymerization of MMA and modified KIT-6 as filler.


Sign in / Sign up

Export Citation Format

Share Document