scholarly journals Physico-chemical properties of irradiated poly (vinyl alcohol)–Ethylene glycol blend films by γ-rays and ion beam

2022 ◽  
Vol 30 ◽  
pp. 096739112110632
Author(s):  
SI Radwan Torab ◽  
MM Shehata ◽  
HH Saleh ◽  
ZI Ali

Poly (vinyl alcohol) is blended with ethylene glycol by casting method to form PVA-EG blend films. These films were irradiated by both N2 ion beam extracted from dc ion source at different ion fluences and γ-rays with various irradiation doses. The effects of ion beam and γ-rays irradiation on the thermal, micro-hardness, and gel fraction properties of PVA-EG blend films were investigated. The gel fraction % and micro-hardness increase with increasing the γ-rays doses up to 150 kGy and then decreased, where they increased at all fluences of ion beam irradiation. The improvement in the gel fraction percentage and micro-hardness suggest that PVA-EG blend films exhibited a crosslink density. The thermal behavior was examined by thermogravimetric analysis and it shows different thermal patterns depending on the type and dose of radiation. The thermal stability parameters of γ-rays- and ion beam-irradiated PVA-EG samples were evaluated using the Ti, Ts, T0.5, Tf temperatures, and activation energy (Ea) values. The thermal stability parameters were dependent on both the type and extent of irradiation dose and fluence. Finally, there is a good agreement between the obtained results from different measurement techniques.

2019 ◽  
Vol 54 (15) ◽  
pp. 2037-2050
Author(s):  
M Moeez Mughal ◽  
M Wasim Akhtar ◽  
M Moazam Baloch ◽  
Muddassir Ali Memon ◽  
Junaid Ali Syed ◽  
...  

An effective method was adopted to improve the thermo-mechanical properties of the epoxy composite by functionalization of the sisal fiber. Initially, a neat sisal fiber was acetylated with molar solution of acidic mixture (0.5:1 of HNO3:H2SO4) that removed the content of lignin and hemicellulose and increased the crystallinity of the sisal fiber. The acetylated sisal ( a-sisal) fiber was further treated with 3-aminpropyltriethoxy silane to graft the silanol moieties on sisal fiber. The functionalization of the sisal fiber with 3-aminpropyltriethoxy silane exhibits the strong interaction with epoxy, resulting in homogenous dispersion of the sisal fiber in epoxy. The composite possesses great enhancement in thermal and mechanical properties. The tensile strength in functionalized sisal epoxy composite ( CP-f-Sisal) was significantly enhanced up to 23% in comparison to non-functionalized sisal epoxy composite ( CP-n-Sisal) by adding 15 wt.% of the sisal fiber. In addition, the functionalized sisal epoxy composite ( CP-f-sisal) shows better thermal stability as compared to non-functionalized sisal epoxy composite ( CP-n-sisal). Similar results are attributed by investigating the kinetics of thermal stability parameters that include activation energy and integral procedure decomposition temperature.


2003 ◽  
Vol 33 (7) ◽  
pp. 655-658 ◽  
Author(s):  
V V Apollonov ◽  
A M Prokhorov ◽  
V A Shmakov

Author(s):  
Bernard Téhi Sea ◽  
Armand Kouassi Kanga ◽  
Djary Michel Koffi ◽  
Lucien Patrice Kouamé

Polygalacturonases are extensively used in food industries for pectic substances degradation. In this paper, we investigate on thermal stability parameters of two Polygalacturonases previously isolated from digestive juice of the snail Limicolaria flammea for several industrial applications such as fruit juice clarification. Thermal inactivation was carried out in the temperature range of 55°C to 80°C from 15 to 120 min. All results were statistically analysed. The results shown that thermal inactivation of studied acid phosphatases follows first order kinetics. At their optimum temperatures, these enzymes showed high half-lives ranging from 462.06 to 630.10 min and D values from 1535.00 to 2093.64 min suggesting that these two enzymes had a large thermal stability. The high values of ΔG# (93.96 to 94.97 kJ/mol) reveal a better resistance to denaturation. The relatively high activation energies (from 120.35 to 129.13 kJ/mol) and average enthalpy values (from 117.67 to 126.44 kJ.mol−1) could corroborate the good stability of these biocatalyst. All these results suggest that Polygalacturonases from digestive juice of the snail Limicolaria flammea may be profitably exploited in future food industrial applications.


Author(s):  
V. V. Kondratenko ◽  
M. V. Trishkaneva ◽  
M. T. Levshenko ◽  
T. A. Pozdnyakova ◽  
A. Y. Kolokolova

Kinetic studies of the thermal inactivation of test crop spores are necessary to develop optimal heat treatment regimes for fruit juices. The purpose of the work is to study the dynamics of changes in the thermal stability parameters DT and z depending on changes in the soluble solids content in canned fruit products using the example of certain types of apple juice products with a pH of 3.80. The regularity of thermal inactivation of ascospores of the mesophilic mold Aspergillus fischeri in concentrated apple juice (JAC) with a soluble dry matter (RSV) content of 70%, in restored apple juice with RSV – 11.2%, and in restored apple juice with pulp with RSV – 16% was studied. The parameters of thermal stability were determined by the capillary method at temperatures of 80, 85, 90, and 95 °C. It was experimentally established that the heat resistance of A. fischeri spores in clarified apple juice was DT 95 °С = 0.16 min, and the parameter value z = 6.76 °C, in apple juice with pulp parameters: DT 95 °C = 0.24 min, z – 7.12 °C, in YaKS – DT 95 °C = 0.39 min, and z – 7.8 °C. The dynamics of thermal stability parameters D and z of A. fischeri mold fungus spores (test cultures) versus RSV concentration of juice products was established. The research results showed that with an increase in the concentration of RSV, the thermal stability of spores increases exponentially. The rate of increase in thermal stability decreases with increasing concentration of RSV. Since the concentration of RSV affects the rheological properties of the product (viscosity), this leads to a change in the kinetics of heating in products with convection heat transfer. Therefore, an increase in the concentration of RSV should inevitably lead not only to an increase in the thermal stability of spores of microorganisms, but also to a shift in the region of optimal modes of heat treatment of products toward an increase in the thermal load to ensure regulatory requirements for microbiological safety.


1989 ◽  
Vol 54 (10) ◽  
pp. 2711-2714
Author(s):  
Ivo Sláma ◽  
Jarmila Malá

The dependence of the induction period of crystallization on the supercooling was determined for the Ca(NO3)2-ethylene glycol system at mole fractions of the former from 0 to 0.049, and treated in terms of the TTT (Time-Temperature-Transformation) diagram. Addition of Ca(NO3)2 to ethylene glycol brings about a substantial increase in the critical induction period of crystallization. The thermal stability of glasses is discussed in terms of the shape and position of the TTT curves.


Sign in / Sign up

Export Citation Format

Share Document