An energy-based model for ballistic impact analysis of ceramic-composite armors

2012 ◽  
Vol 22 (2) ◽  
pp. 145-187 ◽  
Author(s):  
NK Naik ◽  
Santosh Kumar ◽  
D Ratnaveer ◽  
Makarand Joshi ◽  
Kiran Akella

An analytical model is presented for the ballistic impact behavior of ceramic-composite armors. The model is based on wave theory and energy balance between the kinetic energy of the projectile and the energy absorbed by different mechanisms. The armor analyzed consists of front composite cover layer, ceramic plate, rubber layer and the composite backing plate. The projectile is cylindrical. The major damage and energy-absorbing mechanisms are compression of the target directly below the projectile, compression in the surrounding region around the point of impact, formation of ring cracks and radial cracks in the ceramic leading to tensile failure, shear plugging, pulverization of the ceramic, tension in the yarns, delamination and matrix cracking in the composite, bulge formation on the back face of the composite backing plate and friction between the target and the projectile. Projectile erosion and deformation are also considered. Kinetic energy, velocity and deceleration of the projectile, distance traveled by the projectile and the contact force are presented as a function of time. Ballistic limit velocity, contact duration and damage progression are also given. Further, solution procedure is presented for the study of ballistic impact behavior of ceramic-composite armors. Analytical predictions are validated with the experimental results. Finally, performance of a typical ceramic-composite armor is presented.

BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 6123-6134
Author(s):  
Siti Nikmatin ◽  
Bambang Hermawan ◽  
Irmansyah ◽  
Mohammad Nur Indro ◽  
Mochammad Danny Sukardan ◽  
...  

The ballistic impact behavior of oil empty fruit bunch fiber reinforced bio-composites was studied. Epoxy and polyester resins were used as the main material and were evaluated as a matrix to determine their capability. The ballistic test was performed using a 9 mm handgun and a jacketed hollow point round. A model based on kinematics and dynamics was used to calculate the decrease in velocity of the projectile with a constant deceleration. The energy lost during the impact was calculated based on the theory of kinetic energy. The epoxy bio-composite was able to hold a projectile more successfully than the polyester bio-composite at a certain penetration depth. The curve of the decrease in velocity for both of the resins was exponentially distributed. An 18% epoxy bio-composite was able to more successfully stop the projectile at a penetrative depth of 2.14 mm and was able to absorb all the kinetic energy generated (408 J).


2021 ◽  
pp. 105678952199210
Author(s):  
Ibrahim Goda ◽  
Jérémie Girardot

Hybrid ceramic/composite targets are acknowledged to provide effective impact protection against armor piercing projectiles, which is why the research on this topic is continuously developing further. In this work, a nonlinear dynamic finite element (FE) simulation method is developed to systematically explore the ballistic perforation behaviors of hybrid ceramic/woven-fabric reinforced polymer (WFRP) composite when impacted by a non-deformable projectile. The hybrid system is composed by an alumina ceramic plate forming the front surface and glass or carbon WFRP composite back-up plate. The simulations are carried out using ABAQUS/Explicit FE code, wherein three different constitutive material models are formulated and implemented. The Johnson–Holmquist and composite damage models are used for alumina and composite material behaviors, respectively. The brittle fracture and fragmentation of the ceramic plate and the failure criteria based on fracture of fibers or matrices of composite materials during perforation are considered. Besides, interlaminar delamination between composite plies as well as ceramic/composite interfacial decohesion are modeled using a cohesive surface method, and the behaviors of interlayer degradation and failure are described using a traction-separation law. The accuracy of the developed model is validated with available experimental and analytical results. What’s more, the perforation process against the projectile and the ballistic mechanism of each layer in the composite backplate and in the ceramic as well are profoundly explored. Meanwhile, the numerical simulations are used to evaluate the changes of energy of the projectile and ceramic/composite panels. The influence of key parameters, such as interface cohesive properties and friction, on the ballistic performance in terms of energy absorption capability is additionally addressed. For the preliminary and early design phase, the present dynamic model could provide an efficient approach for numerical predictions of ballistic impact responses of the hybrid ceramic/FRP composites.


2010 ◽  
Vol 132 (7) ◽  
Author(s):  
Tanmay Basak ◽  
Sankaran Durairaj

A detailed theoretical analysis has been carried out to study efficient microwave assisted heating of thermoplastic (Nylon 66) slabs via polymer-ceramic-polymer composite attached with ceramic plate at one side. The ceramic layer or plate is chosen as Al2O3 or SiC. The detailed spatial distributions of power and temperature are obtained via finite element simulation. It is found that uniform heating with enhanced processing rate may occur with specific thickness of Al2O3 composite, whereas SiC composite leads to enhanced processing rate with higher thermal runaway for thick Nylon samples attached with Al2O3 plate. SiC composite is effective due to enhanced processing rate, whereas Al2O3 is not effective due to reduced processing rate for thin samples attached with Al2O3 plate. For samples attached with SiC plate, thermal runaway is reduced by SiC composite, whereas that is not reduced by Alumina composite. Current study recommends efficient heating methodologies for thermoplastic substances with ceramic composite to achieve a higher processing rate with uniform temperature distribution.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3554
Author(s):  
Robert Böhm ◽  
Andreas Hornig ◽  
Tony Weber ◽  
Bernd Grüber ◽  
Maik Gude

The impact behavior of carbon fiber epoxy bumper brackets reinforced with 2D biaxial and 2D triaxial braids was experimentally and numerically analyzed. For this purpose, a phenomenological damage model was modified and implemented as a user material in ABAQUS. It was hypothesized that all input parameters could be determined from a suitable high-speed test program. Therefore, novel impact test device was designed, developed and integrated into a drop tower. Drop tower tests with different impactor masses and impact velocities at different bumper bracket configurations were conducted to compare the numerically predicted deformation and damage behavior with experimental evidence. Good correlations between simulations and tests were found, both for the global structural deformation, including fracture, and local damage entities in the impact zone. It was proven that the developed phenomenological damage models can be fully applied for present-day industrial problems.


Author(s):  
Chin-Tung Cheng ◽  
Ming-Hsiang Shih

This research aims to investigate the energy dissipation characteristic and impact behavior of rocking piers under free vibration. Research parameters include rocking interfaces (stiff or flexible), geometry of the column cross-section (circular or rectangular), aspect ratio of the columns, anchorage of prestressing tendons and scale effect. To validate the proposed theory, five columns were constructed and will be tested. A numerical process was proposed to simulate the rocking behavior of columns. Numerical analysis revealed that aspect ratio remarkably affects the rocking behavior, however, size effect and shape of cross section had no significant influence on the rocking behavior. Contrary to the instinct, anchored columns may have less damping due to the higher restoring forces that leads to larger acceleration and slower degradation in kinetic energy.


Sign in / Sign up

Export Citation Format

Share Document