In Vitro Kinematics of the Axially Loaded Ankle Complex in Response to Dorsiflexion and Plantarflexion

1995 ◽  
Vol 16 (8) ◽  
pp. 514-518 ◽  
Author(s):  
Beat Hintermann ◽  
Benno M. Nigg

The rotational movements of the tibia and calcaneus that occur with dorsiflexion-plantarflexion and axial loading were studied in cadaver foot-leg specimens using an unconstrained testing apparatus. Independent of the foot flexion position, significant internal rotation of the tibia and eversion of the calcaneus were noted after the ankle complex was axially loaded. Independent of loading, 10° of dorsiflexion resulted in 0.1° of eversion and 2.1° of internal rotation of the tibia. Conversely, 10° of plantarflexion resulted in 1.6° of inversion and 1.3° of external rotation of the tibia. The induced rotational movements of the tibia and the calcaneus differed significantly between the specimens. These results suggest that the foot “axes” did not change by axially loading the ankle complex and they support previous reports that the ankle complex uses different axes for dorsiflexion and plantarflexion.

1995 ◽  
Vol 16 (9) ◽  
pp. 567-571 ◽  
Author(s):  
Beat Hintermann ◽  
Christian Sommer ◽  
Benno M. Nigg

The purpose of this study was to quantify the effect of sequential ligament transection (anterior talofibular, calcaneofibular, posterior talofibular, deltoid, and subtalar interosseous ligaments) on the rotational movement of the tibia and the calcaneus as associated with axial loading and dorsi-plantarflexing the foot. Eight cadaver foot-leg specimens were investigated using a unconstrained testing apparatus. As the ankle complex was axially loaded, almost the same internal rotation of the tibia and the same calcaneus eversion was found with and without the various degrees of lateral and medial ligament release; additional sectioning of the subtalar interosseous ligament tremendously increased the resulting tibial and calcaneal rotation. While tibial and calcaneal rotation from foot dorsi-plantarflexing did not alter significantly with transection of the lateral ligaments, almost no tibial and calcaneal rotation occurred after additional sectioning of the deltoid and subtalar interosseous ligament. These results indicate that, after release of the lateral ligaments, the foot becomes partially mechanically disconnected from the tibia by additional transection of the medial ligaments and even further disconnected after transection of the subtalar interosseous ligament.


Author(s):  
Denis J. DiAngelo ◽  
Jaymes D. Granata ◽  
Greg C. Berlet ◽  
Rahul Ghotge ◽  
Yuan Li ◽  
...  

The purpose of this study was to develop a cadaveric model for evaluating the relative motion across joint segments in the foot under simulated physiologic loading conditions. The specific aims were to 1) Develop a multi-axis testing platform that simulates three-dimensional (3D) loading conditions through the foot and ankle complex (Achilles load, tibial compression, and internal/external rotation) in a sequential or simultaneous manner, and 2) Evaluate and compare the three-dimensional (3D) kinematics between specific bones of interest in the foot for each individual cadaveric specimen.


2014 ◽  
Vol 14 (01) ◽  
pp. 1450005 ◽  
Author(s):  
LORENZO ZANI ◽  
LUCA CRISTOFOLINI ◽  
MATEUSZ MARIA JUSZCZYK ◽  
LORENZO GRASSI ◽  
MARCO VICECONTI

Although the direction of loads applied to the proximal human femur is unpredictable during sideways fall, most in vitro and numerical simulations refer to a single loading condition (15° internal rotation; 10° adduction), which has been anecdotally suggested in the 1950s. The aim of the present study was to improve in vitro simulations of sideways falls on the proximal femur. An in vitro setup was developed that allowed exploring a range of loading directions +/-90° internal–external rotation; 0°–50° adduction). To enable accurate control of the loading conditions (direction and magnitude of all load components applied to the femur), the setup included a number of low-friction linear and rotary bearings. The setup was instrumented with an axial and a torsional load cell, three displacement transducers and a rotation transducer to monitor the most significant components of load/displacement during testing. The strain distribution was measured on the bone surface (16 triaxial strain gauges, 2,000 Hz). Fracture was recorded with a high-speed camera. The setup was successfully tested on a cadaveric femur non-destructively (12 loading configurations) and destructively (15° internal rotation; 10° adduction). All measurements were highly repeatable (the displacements of the femoral head varied by < 2% between repetitions; the tilt in the frontal plane by < 0.05°; and strain varied on average 0.34% between repetitions). The displacement of the femoral head varied by over 50% when the same force was applied in different directions. Principal strains at the same location varied by over 70%, depending on the direction of the applied force. The high-speed video enabled the identification of the point of fracture initiation. This study has shown that a new paradigm for testing the proximal femur (including improved testing conditions and a variety of loading configurations) can provide more accurate and more extensive information about the state of strain.


1995 ◽  
Vol 16 (10) ◽  
pp. 633-636 ◽  
Author(s):  
Beat Hintermann ◽  
Benno M. Nigg

The purpose of this study was to quantify the effect of selective arthrodesis (stabilization) of the ankle, subtalar, and talonavicular joints on the rotational movement of the tibia and the calcaneus occurring with dorsiflexion/plantarflexion. Six cadaver foot-leg specimens were investigated using an unconstrained testing apparatus. Simulated ankle joint arthrodesis caused a large increase in tibial rotation and calcaneal eversion-inversion. Subtalar and talonavicular stabilization did not cause as large a rotation.


1994 ◽  
Vol 15 (3) ◽  
pp. 134-140 ◽  
Author(s):  
Joseph R. Cass ◽  
Harry Settles

This study was undertaken to elucidate the kinematics of hindfoot instability. An axial load was applied to the inverted hindfoot. Unlike prior studies, axial rotation was not constrained. Using computerized tomography, measurements were made on the axial views of external or internal rotation of the leg, talus, and calcaneus. On the coronal views, tilting of the talus at the ankle and subtalar joints was assessed. No tilting of the talus in the mortise occurred with isolated release of the anterior talofibular (ATF) or calcaneofibular (CF) ligament. In every specimen, talar tilt occurred only after both ligaments were released, averaging 20.6°. External rotation of the leg occurred with inversion averaging 11.1° in the intact specimen. The leg averaged a further external rotation of 4.9° after ATF release and 12.8° further than the intact inverted specimens when both ligaments (ATF-CF) had been released. In earlier reports on the subject, the articular surfaces were believed to be the main constraint against tilting of the talus. In those studies, either axial rotation was constrained while inversion was allowed, or vice versa. Based on the data reported here, the ATF and the CF work in tandem to prevent tilting of the talus, and the articular surfaces do not seem to prevent tilting of the talus in the mortise.


1999 ◽  
Vol 4 (1) ◽  
pp. 6-7
Author(s):  
James J. Mangraviti

Abstract The accurate measurement of hip motion is critical when one rates impairments of this joint, makes an initial diagnosis, assesses progression over time, and evaluates treatment outcome. The hip permits all motions typical of a ball-and-socket joint. The hip sacrifices some motion but gains stability and strength. Figures 52 to 54 in AMA Guides to the Evaluation of Permanent Impairment (AMA Guides), Fourth Edition, illustrate techniques for measuring hip flexion, loss of extension, abduction, adduction, and external and internal rotation. Figure 53 in the AMA Guides, Fourth Edition, illustrates neutral, abducted, and adducted positions of the hip and proper alignment of the goniometer arms, and Figure 52 illustrates use of a goniometer to measure flexion of the right hip. In terms of impairment rating, hip extension (at least any beyond neutral) is irrelevant, and the AMA Guides contains no figures describing its measurement. Figure 54, Measuring Internal and External Hip Rotation, demonstrates proper positioning and measurement techniques for rotary movements of this joint. The difference between measured and actual hip rotation probably is minimal and is irrelevant for impairment rating. The normal internal rotation varies from 30° to 40°, and the external rotation ranges from 40° to 60°.


1970 ◽  
Vol 1 (1) ◽  
pp. 78-82
Author(s):  
Paulo José Oliveira Cortez ◽  
José Elias Tomazini ◽  
Mauro Gonçalves

Introdução: A diminuição da capacidade de exercer esforços por parte dos músculos rotadores pode criar uma variedade de problemas. O conhecimento preciso do nível de força muscular de um indivíduo é importante, tanto para a avaliação da capacidade funcional ocupacional, como para uma apropriada prescrição de exercícios atléticos e de reabilitação. Percebe-se escassez de informação sobre as articulações do ombro, bem como os fatores envolvidos na força muscular dessa região. O objetivo deste estudo foi comparar a força gerada pelos músculos do manguito rotador entre o membro superior direito e o membro superior esquerdo em indivíduos saudáveis. Métodos: Participaram do estudo 22 sujeitos do sexo masculino, com idade de 18 e 19 anos, militares, saudáveis e sem história clínica de patologia ortopédica ou qualquer tipo de lesão no sistema musculoesquelético. Foram aplicados dois testes de força: Rotação Interna e Rotação Externa. Resultado : A força média de rotação interna no membro superior direito (MSD) foi maior que a força média de rotação interna no membro superior esquerdo (MSE) (p=0,723) e a força de rotação externa no MSD foi menor que a força média de rotação externa no MSE (p=0,788). Não houve diferença estatística na comparação dos valores de força de todos os testes de força isométrica. Conclusão: Para amostra estudada e metodologia utilizada na avaliação da força muscular, não houve diferença estatística na comparação da força gerada pelos músculos do manguito rotador do membro superior direito e do membro superior esquerdo.Rotator Cuff Muscle Strength in Healthy Individuals Introduction: Decreased ability to exert efforts by the rotator muscles can create a variety of problems. The precise knowledge of the level of muscular strength of an individual is important for both the functional capacity evaluation for occupational as an appropriate exercise prescription and rehabilitation of athletic. It is perceived scarcity of information on the shoulder joints as well as factors involved in muscle strength in this region. Objective: Develop a device for measuring the strength generated by the muscles of the upper limbs and the verification of efficiency and adaptability of this device through a comparative study of muscle strength in healthy subjects. Methods: The study included 22 male subjects, aged 18 and 19 years, military personnel, body mass between 57.7 and 93 kg (71.8 ± 9.45 kg) and height between 1.67 and 1.90 m (1.75 ± 0.06 m), healthy and without a history of orthopaedic disease or any kind of damage to the musculoskeletal system. Three strength tests were applied: Internal Rotation and External Rotation. For each type of effort three maximum voluntary contractions were required for 10 seconds, with an interval of 30 seconds between each contraction.  Results: Internal rotation in the right upper limb (RUL) was higher than the average strength of internal rotation in the left upper limb (LUL) (p = 0, 723) and the external rotation strength in RUL was lower than the average strength of external rotation in the LUL (p=0,788).  No statistical difference in comparing the strength values of all isometric strength tests. Conclusion: For sample and methodology used to assess muscle strength, there was no statistical difference in comparing the force generated by the muscles of the rotator cuff of the right and left upper limb.


2021 ◽  
pp. 036354652098868
Author(s):  
Stephen J. Thomas ◽  
Justin Cobb ◽  
Scott Sheridan ◽  
Joseph Rauch ◽  
Ryan W. Paul

Background: Because of the large forces and high frequency of throwing, the upper extremity experiences repetitive stresses that lead to acute and chronic adaptations. While the importance of pennation angle and muscle thickness as predictors of muscle force production has been shown in other populations and other joints, there has been little research done that examines these variables in the shoulders of baseball players. Purpose: (1) To examine the chronic effect pitching has on the rotator cuff muscle architecture (pennation angle and muscle thickness) in healthy professional baseball pitchers, and (2) to examine the correlation between muscle architecture and clinical measures of strength and range of motion (ROM). Study Design: Cross-sectional study; Level of evidence, 3. Methods: Twenty-eight healthy professional pitchers were recruited during the 2019 spring training. Internal rotation (IR) and external rotation (ER) strength were measured with a handheld dynamometer and IR and ER ROM were measured with an inclinometer. A diagnostic ultrasound machine was utilized to capture images of humeral retroversion, as well as the pennation angle and muscle thickness of the infraspinatus and teres minor muscles. ImageJ software was used to quantify the pennation angle and muscle thickness. Results: There were no significant differences between the dominant and nondominant arms for ER or IR strength. Also, no pennation angle and muscle thickness differences were found between the dominant and nondominant arms. A weak positive relationship between infraspinatus muscle thickness (superficial and total) and ER strength ( P = .016, R = 0.287 and P = .009, R = 0.316) and a moderate negative relationship between soft tissue glenohumeral internal rotation deficit (GIRD) and the bilateral difference of the teres minor deep pennation angle ( R = −0.477, P = .008) were observed. No other significant relationships were noted. Conclusion: Our results are contrary to current literature as we expected to see a stronger dominant arm, with a larger pennation angle and greater muscle thickness. Interestingly, we found that ER strength was positively related to only the thickness of the infraspinatus muscle, and that soft tissue GIRD was positively related to only the side-to-side adaptation of the pennation angle within the deep portion of the teres minor. This suggests that when posterior shoulder tightness occurs, specifically the architecture of the teres minor muscle is involved. However, the organization to which these players belonged has a very extensive training protocol throughout the year that emphasizes bilateral training during a large majority of the exercises. Therefore, the results may not be generalizable to all professional players.


Osteology ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 29-38
Author(s):  
Alessandra Berton ◽  
Sergio De Salvatore ◽  
Vincenzo Candela ◽  
Gabriele Cortina ◽  
Daniela Lo Presti ◽  
...  

Rotator cuff tears are a frequent cause of shoulder pain that often require arthroscopic repair. After surgery an intense and well-studied rehabilitation protocol is needed to obtain the complete recovery of shoulder function. Fifty patients, who sustained arthroscopic rotator cuff repair for symptomatic, atraumatic and full-thickness supraspinatus tendon tear, were involved. According to our rehabilitation protocol, during the first four postoperative weeks, the arm was supported with an abduction sling pillow, and pendulum exercises, table slide and active elbow extension and flexion were conceded. Outcome measures (Oxford shoulder score (OSS), simple shoulder test (SST), patient-reported satisfaction), shoulder function (range of motion (ROM) and muscle strength), and MRI examination were evaluated. The mean OSS score and SST score increased from 16 to 30.2 and from 5.3 to 11.4, respectively. Patient-reported satisfaction was 96%. At 12 months, patients improved ROM and muscle strength. Postoperative passive anterior elevation was 176; external rotation averaged 47; internal rotation was 90. Postoperative muscle strength during anterior elevation was 8.3 ± 2.2 kg, internal rotation 6.8 ± 3 kg, external rotation 5.5 ± 2.3 kg. Five out of seven patients with recurrent tears evaluated their results as satisfactory. They reported improvements in terms of OSS and SST mean scores despite recurrent tears; therefore, they did not undergo revision surgery. The delayed postoperative physical therapy protocol was associated with improvements in the outcome measures and shoulder function compared to the preoperatory state and rotator cuff healing demonstrated by MRI.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Phob Ganokroj ◽  
Nuchanun Sompornpanich ◽  
Pichitpol Kerdsomnuek ◽  
Bavornrat Vanadurongwan ◽  
Pisit Lertwanich

Abstract Background Measurement of hip rotation is a crucial clinical parameter for the identification of hip problems and the monitoring of symptoms. The objective of this study was to determine whether the use of two smartphone applications is valid and reliable for the measurement of hip rotation. Methods An experimental, cross-sectional study was undertaken to assess passive hip internal and external rotation in three positions by two examiners. The hip rotational angles were measured by a smartphone clinometer application in the sitting and prone positions, and by a smartphone compass application in the supine position; their results were compared with those of the standard, three-dimensional, motion analysis system. The validities and inter-rater and intra-rater reliabilities of the smartphone applications were evaluated. Results The study involved 24 participants. The validities were good to excellent for the internal rotation angles in all positions (ICC 0.81–0.94), good for the external rotation angles in the prone position (ICC 0.79), and fair for the sitting and supine positions (ICC 0.70–0.73). The measurement of the hip internal rotation in the supine position had the highest ICC value of 0.94 (0.91, 0.96). The two smartphone applications showed good-to-excellent intra-rater reliability, but good-to-excellent inter-rater reliability for only three of the six positions (two other positions had fair reliability, while one position demonstrated poor reliability). Conclusions The two smartphone applications have good-to-excellent validity and intra-rater reliability, but only fair-to-good inter-rater reliability for the measurement of the hip rotational angle. The most valid hip rotational position in this study was the supine IR angle measurement, while the lowest validity was the ER angle measurement in the sitting position. The smartphone application is one of the practical measurements in hip rotational angles. Trial registration Number 20181022003 at the Thai Clinical Trials Registry (http://www.clinicaltrials.in.th) which was retrospectively registered at 2018-10-18 15:30:29.


Sign in / Sign up

Export Citation Format

Share Document