scholarly journals Association of Ambient Fine Particulate Matter (PM2.5) with Elevated Fecal Hemoglobin Concentration and Colorectal Carcinogenesis: A Population-Based Retrospective Cohort Study

2021 ◽  
Vol 28 ◽  
pp. 107327482110412
Author(s):  
Mei-Sheng Ku ◽  
Chen-Yu Liu ◽  
Chen-Yang Hsu ◽  
Han-Mo Chiu ◽  
Hsiu-Hsi Chen ◽  
...  

The roles of ambient fine particulate matter (PM2.5) in the prevention of colorectal cancer (CRC) have been scarcely highlighted as there is short of empirical evidence regarding the influences of PM2.5 on multistep carcinogenic processes of CRC. A retrospective cohort design with multistate outcomes was envisaged by linking monthly average PM2.5 concentrations at 22 city/county level with large-scale cohorts of cancer-screened population to study the influences of PM2.5 on short-term inflammatory process and multistep carcinogenic processes of CRC. Our study included a nationwide CRC screening cohort of 4,628,995 aged 50–69 years who attended first screen between 2004 and 2009 and continued periodical screens until 2016. We aimed to illustrate the carcinogenesis of PM2.5 related to CRC by applying both hierarchical logistical and multistate Markov regression models to estimate the effects of air pollution on fecal immunochemical test (FIT) positive (a proxy of inflammatory marker) and pre-clinical and clinical states of CRC in the nationwide cohort. We found a significant association of high PM2.5 exposure and FIT-positive by an increased risk of 11% [95% confidence interval (CI), 10–12]. PM2.5 enhanced the risk of being preclinical state by 14% (95% CI, 10–18) and that of subsequent progression from pre-clinical to clinical state by 21% (95% CI, 14–28). Furthermore, the elevated risks for CRC carcinogenesis were significantly higher for people living in high PM2.5 pollution areas in terms of yearly averages and the number days above 35 µg/m3 than those living in low PM2.5 pollution areas. We concluded that both short-term and long-term PM2.5 exposure were associated with multistep progression of CRC, which were useful to design precision primary and secondary prevention strategies of CRC for people who are exposed to high PM2.5 pollution.

2021 ◽  
Vol 7 (33) ◽  
pp. eabi8789
Author(s):  
Xiaodan Zhou ◽  
Kevin Josey ◽  
Leila Kamareddine ◽  
Miah C. Caine ◽  
Tianjia Liu ◽  
...  

The year 2020 brought unimaginable challenges in public health, with the confluence of the COVID-19 pandemic and wildfires across the western United States. Wildfires produce high levels of fine particulate matter (PM2.5). Recent studies reported that short-term exposure to PM2.5 is associated with increased risk of COVID-19 cases and deaths. We acquired and linked publicly available daily data on PM2.5, the number of COVID-19 cases and deaths, and other confounders for 92 western U.S. counties that were affected by the 2020 wildfires. We estimated the association between short-term exposure to PM2.5 during the wildfires and the epidemiological dynamics of COVID-19 cases and deaths. We adjusted for several time-varying confounding factors (e.g., weather, seasonality, long-term trends, mobility, and population size). We found strong evidence that wildfires amplified the effect of short-term exposure to PM2.5 on COVID-19 cases and deaths, although with substantial heterogeneity across counties.


Author(s):  
Jiyoung Shin ◽  
Jongmin Oh ◽  
In Sook Kang ◽  
Eunhee Ha ◽  
Wook Bum Pyun

Background/Aim: Previous studies have suggested that the short-term ambient air pollution and temperature are associated with myocardial infarction. In this study, we aimed to conduct a time-series analysis to assess the impact of fine particulate matter (PM2.5) and temperature on acute myocardial infarction (AMI) among adults over 20 years of age in Korea by using the data from the Korean National Health Information Database (KNHID). Methods: The daily data of 192,567 AMI cases in Seoul were collected from the nationwide, population-based KNHID from 2005 to 2014. The monitoring data of ambient PM2.5 from the Seoul Research Institute of Public Health and Environment were also collected. A generalized additive model (GAM) that allowed for a quasi-Poisson distribution was used to analyze the effects of PM2.5 and temperature on the incidence of AMI. Results: The models with PM2.5 lag structures of lag 0 and 2-day averages of lag 0 and 1 (lag 01) showed significant associations with AMI (Relative risk [RR]: 1.011, CI: 1.003–1.020 for lag 0, RR: 1.010, CI: 1.000–1.020 for lag 01) after adjusting the covariates. Stratification analysis conducted in the cold season (October–April) and the warm season (May–September) showed a significant lag 0 effect for AMI cases in the cold season only. Conclusions: In conclusion, acute exposure to PM2.5 was significantly associated with AMI morbidity at lag 0 in Seoul, Korea. This increased risk was also observed at low temperatures.


2019 ◽  
Vol 247 ◽  
pp. 874-882 ◽  
Author(s):  
Yang Yang ◽  
Zengliang Ruan ◽  
Xiaojie Wang ◽  
Yin Yang ◽  
Tonya G. Mason ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document