Vibration analysis of magnetorheological fluid circular sandwich plates with magnetostrictive facesheets exposed to monotonic magnetic field located on visco-Pasternak substrate

2020 ◽  
Vol 26 (17-18) ◽  
pp. 1523-1537 ◽  
Author(s):  
Saeed Amir ◽  
Ehsan Arshid ◽  
Zahra Khoddami Maraghi ◽  
Abbas Loghman ◽  
Ali Ghorbanpour Arani

Magnetorheological fluids are materials that react to the applied magnetic field and are converted to the quasi-solid phase from the liquid one. Their applications in control and suppression of vibration have interested scientists nowadays. The present study is focused on the vibrational behavior of magnetorheological fluid circular plates that are embedded with magnetostrictive face layers. Magnetostrictive materials are also playing an important role in vibration control and are used widely in smart devices such as sensors and actuators. The structure is exposed to the transverse monotonic magnetic field and is located on the visco-Pasternak elastic substrate. Using Hamilton’s principle and based on classical plate theory, the motion equations and boundary conditions are extracted, and the generalized differential quadrature method is selected to solve them. Three different types of magnetorheological fluids are considered, and their effect on the results is discussed. The outcomes of this study can be used to design more capable and precise dampers, smart structures, and devices.

2017 ◽  
Vol 29 (1) ◽  
pp. 137-146 ◽  
Author(s):  
Kwang Pyo Hong ◽  
Ki Hyeok Song ◽  
Myeong Woo Cho ◽  
Seung Hyuk Kwon ◽  
Hyoung Jin Choi

While magnetorheological fluids can be used for ultra-precise polishing, for example, of advanced optical components, oxidation of metallic particles in water-based magnetorheological fluids causes irregular polishing behavior. In this study, carbonyl iron microspheres were initially coated with silica to prevent oxidation and were used to polish BK7 glass. In addition, their rheological and sedimentation characterizations were investigated. Material removal and surface roughness were analyzed to investigate the surface quality and optimal experimental conditions of polishing wheel speed and magnetic field intensity. The maximum material removal was 0.95 µm at 95.52 kA/m magnetic field intensity and 1854 mm/s wheel speed. A very fine surface roughness of 0.87 nm was achieved using the silica-coated magnetorheological fluid at 47.76 kA/m magnetic field intensity and 1854 mm/s wheel speed.


2016 ◽  
Vol 23 (19) ◽  
pp. 3247-3265 ◽  
Author(s):  
Majid Ghadiri ◽  
Navvab Shafiei

This study investigates the small-scale effect on the flapwise bending vibrations of a rotating nanoplate that can be the basis of nano-turbine design. The nanoplate is modeled as classical plate theory (CPT) with boundary conditions as the cantilever and propped cantilever. The axial forces are also included in the model as the true spatial variation due to the rotation. Hamilton’s principle is used to derive the governing equation and boundary conditions for the classic plate based on Eringen’s nonlocal elasticity theory and the differential quadrature method is employed to solve the governing equations. The effect of the small-scale parameter, nondimensional angular velocity, nondimensional hub radius, setting angle and different boundary conditions in the first four nondimensional frequencies is discussed. Due to considering rotating effects, results of this study are applicable in nanomachines such as nanomotors and nano-turbines and other nanostructures.


2013 ◽  
Vol 20 (5) ◽  
pp. 879-894 ◽  
Author(s):  
Roshan Lal ◽  
Renu Saini

The present work analyses the buckling and vibration behaviour of non-homogeneous rectangular plates of uniform thickness on the basis of classical plate theory when the two opposite edges are simply supported and are subjected to linearly varying in-plane force. For non-homogeneity of the plate material it is assumed that young's modulus and density of the plate material vary exponentially along axial direction. The governing partial differential equation of motion of such plates has been reduced to an ordinary differential equation using the sine function for mode shapes between the simply supported edges. This resulting equation has been solved numerically employing differential quadrature method for three different combinations of clamped, simply supported and free boundary conditions at the other two edges. The effect of various parameters has been studied on the natural frequencies for the first three modes of vibration. Critical buckling loads have been computed. Three dimensional mode shapes have been presented. Comparison has been made with the known results.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Seyed Rasoul Atashipour ◽  
Ulf Arne Girhammar

This paper deals with stability analysis of clamped rectangular orthotropic thin plates subjected to uniformly distributed shear load around the edges. Due to the nature of this problem, it is impossible to present mathematically exact analytical solution for the governing differential equations. Consequently, all existing studies in the literature have been performed by means of different numerical approaches. Here, a closed-form approach is presented for simple and fast prediction of the critical buckling load of clamped narrow rectangular orthotropic thin plates. Next, a practical modification factor is proposed to extend the validity of the obtained results for a wide range of plate aspect ratios. To demonstrate the efficiency and reliability of the proposed closed-form formulas, an accurate computational code is developed based on the classical plate theory (CPT) by means of differential quadrature method (DQM) for comparison purposes. Moreover, several finite element (FE) simulations are performed via ANSYS software. It is shown that simplicity, high accuracy, and rapid prediction of the critical load for different values of the plate aspect ratio and for a wide range of effective geometric and mechanical parameters are the main advantages of the proposed closed-form formulas over other existing studies in the literature for the same problem.


Author(s):  
A Ghorbanpour Arani ◽  
MJ Maboudi ◽  
H Haghighi ◽  
R Kolahchi

In this study, transverse nonlinear vibration and instability analysis of a viscous-fluid-conveyed single-layered graphene sheet (SLGS) subjected to thermal gradient are investigated. The small-size effects on bulk viscosity and slip boundary conditions of nanoflow through Knudsen number ( Kn), as a small size parameter is considered. Viscopasternak model is considered to simulate the interaction between the graphene sheet and the surrounding elastic medium. Continuum orthotropic plate model and relations of classical plate theory are used. The nonlocal theory of Eringen is employed to incorporate the small-scale effect into the governing equations of the graphene sheet. Differential quadrature method is employed to solve the governing differential equations for simply supported edges. The convergence of the procedure is shown and the effects of flow velocity, temperature change and aspect ratio on the frequency of the single-layered graphene sheet are investigated. Moreover, the critical flow velocities and the instability characteristic are determined. It is evident from the results that the natural frequency of nanosheet increases with rising temperature.


Tribologia ◽  
2019 ◽  
Vol 285 (3) ◽  
pp. 45-50
Author(s):  
Wojciech HORAK ◽  
Marcin SZCZĘCH

The operating state of thrust plain bearings is a function of many parameters, both geometric and related to load conditions. Besides the methods of controlling bearings of this type used so far, new possibilities of modelling their operating characteristics by using substances with controlled rheological properties as a lubricant can be pointed out. Magnetorheological fluids create such a possibility. These are suspensions of particles with magnetic properties in a carrier fluid (usually in mineral or synthetic oil). The influence of magnetic field on this type of fluids changes their rheological properties. This process is almost instantaneous and fully reversible. The paper presents the results of investigations of a thrust squeeze bearing lubricated with magnetorheological fluid. The aim of the study was to determine the influence of selected factors on the axial force as a result of the oscillatory squeeze load.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 515
Author(s):  
Olga Mazur ◽  
Jan Awrejcewicz

Vibrations of single-layered graphene sheets subjected to a longitudinal magnetic field are considered. The Winkler-type and Pasternak-type foundation models are employed to reproduce the surrounding elastic medium. The governing equation is based on the modified couple stress theory and Kirchhoff–Love hypotheses. The effect of the magnetic field is taken into account due to the Lorentz force deriving from Maxwell’s equations. The developed approach is based on applying the Ritz method. The proposed method is tested by a comparison with results from the existing literature. The numerical calculations are performed for different boundary conditions, including the mixed ones. The influence of the material length scale parameter, the elastic foundation parameters, the magnetic parameter and the boundary conditions on vibration frequencies is studied. It is observed that an increase of the magnetic parameter, as well as the elastic foundation parameters, brings results closer to the classical plate theory results. Furthermore, the current study can be applied to the design of microplates and nanoplates and their optimal usage.


Author(s):  
Yuan Ma ◽  
Wen Feng ◽  
Zhen Yan

The buckling analyses of type-II superconducting strip under applied perpendicular magnetic field and/or distributed uniform mechanical load are investigated in this paper. Based on the Bean critical state model, the electromagnetic body force is firstly given. Then, based on the classical plate theory and two-point initial value method, the critical buckling states of the superconducting strip with different boundary conditions are analyzed. Numerical results show the effects of both the thickness and boundary conditions of superconducting strip on the corresponding critical buckling loads. The present work should be helpful to the research and application of superconducting thin strips.


Author(s):  
James Sathya Kumar ◽  
P. Sam Paul ◽  
Girish Raghunathan ◽  
Divin George Alex

AbstractThis review of MRF (magnetorheological fluids or MR fluids) brings out the challenges in methods of preparation, difficulties encountered in storage and use, and possible solutions to overcome the challenges.Magnetorheological fluid in the rheological fluid domain has found use due to its ability to change its shear strength based on the applied magnetic field. Magnetorheological fluids are composed of magnetizable micron-sized iron particles and a non-magnetizable base or carrier fluid along with additives to counter sedimentation and agglomeration.Magnetorheological fluids can respond to external stimuli by undergoing changes in physical properties thus enabling several improved modifications in the existing technology enhancing their application versatility and utility. Thus, magnetorheological fluid, a rheological material whose viscosity undergoes apparent changes on application of magnetic field, is considered as a smart material. Such materials can be used for active and semi-active control of engineering systems.Many studies on the designs of systems incorporating MR fluids, mainly for vibration control and also for other applications including brakes, clutches, dynamometers, aircraft landing gears, and helicopter lag dampers, have emerged over last couple of decades. However, the preparation as well as the maintenance of magnetorheological fluids involves several challenges. Sedimentation is a major challenge, even when stored for moderate periods of time. A comprehensive review is made on the problems confronted in the preparation of magnetorheological fluids as well as sustenance of the properties, for use, over a long period of time. Other problems encountered include agglomeration and in-use thickening (IUT) as well as rusting and crusting. Of interest is the mitigation of these problems so as to prepare fluids with satisfactory properties, and such solutions are reviewed here. The control of magnetorheological fluids and the applications of interest are also reviewed.The review covers additives for overcoming challenges in the preparation and use of magnetorheological fluids that include incrustation, sedimentation, agglomeration, and also oxidation of the particles. The methodology to prepare the fluid along with the process for adding selected additives was reviewed. The results showed an improvement in the reduction of sedimentation and other problems decreasing comparatively. A set of additives for addressing the specific challenges has been summarized. Experiments were carried out to establish the sedimentation rates for compositions with varying fractions of additives.The review also analyzes briefly the gaps in studies on MR fluids and covers present developments and future application areas such as haptic devices.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4084 ◽  
Author(s):  
Zeng Cao ◽  
Xu Liang ◽  
Yu Deng ◽  
Xing Zha ◽  
Ronghua Zhu ◽  
...  

The primary objective of this article is to present a semi-analytical algorithm for the transient behaviors of Functionally Graded Materials plates (FGM plates) considering both the influence of in-plane displacements and the influence of temperature changes. Based on the classical plate theory considering the effect of in-plane displacements, the equilibrium equations of the motion system are derived by Hamilton’s principle. Here, we propose a novel, accurate, and efficient semi-analytical method that incorporates the Fourier series expansion, the Laplace transforms, and its numerical inversion and the Differential Quadrature Method (DQM) to simulate the transient behaviors. This paper validates the proposed method by comparisons with semi-analytical natural frequency results and those from the literature. Expressly, the results of dynamic response also agree well with those generated by the Navier’s method and Finite Element Method (FEM). A convergence study that utilizes the different numbers of sampling points shows that the process can converge quickly, and a few sampling points can achieve high accuracy. The effects of various boundary conditions at the ends, material graded index, and temperature change are further investigated. From the detailed parametric study, it is seen that the peak displacement increases as the edge degrees of freedom, the gradient index of the material, and temperature change increase.


Sign in / Sign up

Export Citation Format

Share Document