Note: Behaviour of Escherichia Coli O157: H7, Listeria Monocytogenes 4b and Yersinia Enterocolitica O3 in Pasteurised and Non-pasteurised Kefir Fermented for One or Two Days

2003 ◽  
Vol 9 (5) ◽  
pp. 365-369 ◽  
Author(s):  
M. Gulmez ◽  
A. Guven

The behaviour of three selected food-borne pathogens, E. coli O157: H7, L. monocytogenes 4b and Y. enterocolitica O3, added to fermented and pasteurised kefir was monitored. Populations of the three strains increased in one-day-fermented kefir, but only E. coli O157: H7 increased in two-days-fermented kefir during fermentation. None of the strains grew during cold storage (4 1 C), although E. coli O157: H7 and L. monocytogenes 4b survived up to 21 days in all samples cold. Y. enterocolitica O3 was the most susceptible strain that was present in one-day-fermented kefir for at least 14 days. Twodaysfermented kefir samples were more acidic thanthose of one-day-fermented samples, but none of the samples was safe enough to create an environment to eliminate the pathogens.

2012 ◽  
Vol 48 (No. 5) ◽  
pp. 126-132 ◽  
Author(s):  
M. Gulmez ◽  
A. Guven

The survival of Escherichia coli O157:H7, Listeria monocytogenes 4b and Yersinia enterocolitica O3 in traditional yogurt and kefir during fermentation, in ayran (a dairy beverage in Turkey), pasteurised (long-life) ayran, modified kefir (salted and diluted kefir) and pasteurised modified kefir during cold storage were investigated. Pasteurised samples were used to monitor the antibacterial effect of natural flora of yogurt and kefir during cold storage. Populations of all the strains were increased during fermentation, and thus pre-fermentation contamination appeared more rhisky than postfermentation contamination. Pasteurisation appeared not to be disaadventageous an application on the microbiological safety of the samples, neverthelessbiological benefits which may come from live microorganisms is lost. While E. coli O157:H7 and L. monocytogenes 4b survived for up to 21 days in all samples, Y. enterocolitica O3 survived only for 14 days in modified kefir. Yogurt microflora appeared to be more suppressive on the pathogens than that of kefir.


2004 ◽  
Vol 25 (3) ◽  
pp. 20
Author(s):  
Narelle Fegan

Escherichia coli O157 and Salmonella are food-borne pathogens of importance to the Australian beef and dairy industries. Cattle are a significant reservoir for both of these pathogens and beef has been the source of food-borne outbreaks of both E. coli O157 and Salmonella. The presence of pathogens in cattle can lead to contamination of carcasses during slaughter and products produced from these contaminated carcasses pose a risk to consumers. However, the magnitude of the risk is not clear. Until recently, almost all of the information published on E. coli O157 and Salmonella in cattle has consisted of only qualitative information i.e. the prevalence of these organisms in cattle. In order to estimate risk, it is important to understand not only how many cattle shed E. coli O157 and Salmonella but also the number of pathogens shed.


2018 ◽  
Vol 19 (0) ◽  
Author(s):  
Priscila Alves Dias ◽  
Daiani Teixeira Silva ◽  
Cláudio Dias Timm

Resumo Kefir é o produto da fermentação do leite pelos grãos de kefir. Esses grãos contêm uma mistura simbiótica de bactérias e leveduras imersas em uma matriz composta de polissacarídeos e proteínas. Muitos benefícios à saúde humana têm sido atribuídos ao kefir, incluindo atividade antimicrobiana contra bactérias Gram positivas e Gram negativas. A atividade antimicrobiana de 60 microrganismos isolados de grãos de kefir, frente à Escherichia coli O157:H7, Salmonella enterica subsp. enterica sorotipos Typhimurium e Enteritidis, Staphylococcus aureus e Listeria monocytogenes, foi estudada através do teste do antagonismo. A ação antimicrobiana dos sobrenadantes das bactérias ácido-lácticas que apresentaram atividade no teste do antagonismo foi testada. O experimento foi repetido usando sobrenadantes com pH neutralizado. Salmonella Typhimurium e Enteritidis sobreviveram por 24 horas no kefir em fermentação. E. coli O157:H7, S. aureus e L. monocytogenes foram recuperados até 72 horas após o início da fermentação. Todos os isolados apresentaram atividade antimicrobiana contra pelo menos um dos patógenos usados no teste do antagonismo. Sobrenadantes de 25 isolados apresentaram atividade inibitória e três mantiveram essa atividade com pH neutralizado. As bactérias patogênicas estudadas sobreviveram por tempo superior àquele normalmente utilizado para a fermentação do kefir artesanal, o que caracteriza perigo em potencial para o consumidor quando a matéria-prima não apresentar segurança sanitária. Lactobacillus isolados de grãos de kefir apresentam atividade antimicrobiana contra cepas de E. coli O157:H7, Salmonella sorotipos Typhimurium e Enteritidis, S. aureus e L. monocytogenes além daquela exercida pela diminuição do pH.


2005 ◽  
Vol 68 (12) ◽  
pp. 2559-2566 ◽  
Author(s):  
SYLVIA GAYSINSKY ◽  
P. MICHAEL DAVIDSON ◽  
BARRY D. BRUCE ◽  
JOCHEN WEISS

Growth inhibition of four strains of Escherichia coli O157:H7 (H1730, F4546, 932, and E0019) and Listeria monocytogenes (Scott A, 101, 108, and 310) by essential oil components (carvacrol and eugenol) solubilized in nonionic surfactant micelles (Surfynol 465 and 485W) was investigated. Concentrations of encapsulated essential oil components ranged from 0.02 to 1.25% depending on compound, surfactant type, and surfactant concentration (0.5 to 5%). Eugenol encapsulated in Surfynol 485W micelles was most efficient in inhibiting growth of the pathogens; 1% Surfynol 485W and 0.15% eugenol was sufficient to inhibit growth of all strains of E. coli O157:H7 and three of four strains of L. monocytogenes (Scott A, 310, and 108). The fourth strain, L. monocytogenes 101, was inhibited by 2.5% Surfynol and 0.225% eugenol. One percent Surfynol 485W in combination with 0.025% carvacrol was effective in inhibiting three of four strains of E. coli O157:H7. Strain H1730 was the most resistant strain, requiring 0.3% carvacrol and 5% surfactant for complete inhibition. Growth inhibition of L. monocytogenes by combinations of carvacrol and Surfynol 465 ranged between 0.15 and 0.35% and 1 and 3.75%, respectively. Generally, the antimicrobial activity of Surfynol 465 in combination with eugenol was higher than that for the combination with carvacrol. The potent activity was attributed to increased solubility of essential oil components in the aqueous phase due to the presence of surfactants and improved interactions of antimicrobials with microorganisms.


2003 ◽  
Vol 228 (4) ◽  
pp. 331-332 ◽  
Author(s):  
Hussein S. Hussein ◽  
Stanley T. Omaye

Verotoxin-producing Escherichia coli (VTEC) have emerged in the past two decades as food-borne pathogens that can cause major outbreaks of human illnesses worldwide. The number of outbreaks has increased in recent years due to changes in food production and processing systems, eating habits, microbial adaptation, and methods of VTEC transmission. The human illnesses range from mild diarrhea to hemolytic uremic syndrome (HUS) that can lead to death. The VTEC outbreaks have been attributed to O157:H7 and non-O157:H7 serotypes of E. coli. These E. coli serotypes include motile (e.g., O26:H11 and O104:H21) and nonmotile (e.g., O111:H–,0145:H–, and O157:H–) strains. In the United States, E. coli O157:H7 has been the major cause of VTEC outbreaks. Worldwide, however, non-O157:H7 VTEC (e.g., members of the 026, O103, O111, O118, O145, and O166 serogroups) have caused approximately 30% of the HUS cases in the past decade. Because large numbers of the VTEC outbreaks have been attributed to consumption of ruminant products (e.g., ground beef), cattle and sheep are considered reservoirs of these food-borne pathogens. Because of the food safety concern of VTEC, a global perspective on this problem is addressed (Exp Biol Med Vol. 228, No. 4). The first objective was to evaluate the known non-O157:H7 VTEC strains and the limitations associated with their detection and characterization. The second objective was to identify the VTEC serotypes associated with outbreaks of human illnesses and to provide critical evaluation of their virulence. The third objective was to determine the rumen effect on survival of E. coli O157:H7 as a VTEC model. The fourth objective was to explore the role of intimins in promoting attaching and effacing lesions in humans. Finally, the ability of VTEC to cause persistent infections in cattle was evaluated.


2002 ◽  
Vol 65 (8) ◽  
pp. 1215-1220 ◽  
Author(s):  
CHIA-MIN LIN ◽  
SARAH S. MOON ◽  
MICHAEL P. DOYLE ◽  
KAY H. McWATTERS

Iceberg lettuce is a major component in vegetable salad and has been associated with many outbreaks of foodborne illnesses. In this study, several combinations of lactic acid and hydrogen peroxide were tested to obtain effective antibacterial activity without adverse effects on sensory characteristics. A five-strain mixture of Escherichia coli O157:H7, Salmonella enterica serotype Enteritidis, and Listeria monocytogenes was inoculated separately onto fresh-cut lettuce leaves, which were later treated with 1.5% lactic acid plus 1.5% hydrogen peroxide (H2O2) at 40°C for 15 min, 1.5% lactic acid plus 2% H2O2 at 22°C for 5 min, and 2% H2O2 at 50°C for 60 or 90 s. Control lettuce leaves were treated with deionized water under the same conditions. A 4-log reduction was obtained for lettuce treated with the combinations of lactic acid and H2O2 for E. coli O157:H7 and Salmonella Enteritidis, and a 3-log reduction was obtained for L. monocytogenes. However, the sensory characteristics of lettuce were compromised by these treatments. The treatment of lettuce leaves with 2% H2O2 at 50°C was effective not only in reducing pathogenic bacteria but also in maintaining good sensory quality for up to 15 days. A ≤4-log reduction of E. coli O157:H7 and Salmonella Enteritidis was achieved with the 2% H2O2 treatment, whereas a 3-log reduction of L. monocytogenes was obtained. There was no significant difference (P > 0.05) between pathogen population reductions obtained with 2% H2O2 with 60- and 90-s exposure times. Hydrogen peroxide residue was undetectable (the minimum level of sensitivity was 2 ppm) on lettuce surfaces after the treated lettuce was rinsed with cold water and centrifuged with a salad spinner. Hence, the treatment of lettuce with 2% H2O2 at 50°C for 60 s is effective in initially reducing substantial populations of foodborne pathogens and maintaining high product quality.


2006 ◽  
Vol 69 (8) ◽  
pp. 1865-1869 ◽  
Author(s):  
AAKASH KHURANA ◽  
GEORGE B. AWUAH ◽  
BRADLEY TAYLOR ◽  
ELENA ENACHE

Studies were conducted to evaluate the combined effect of selected acidulants (acetic, citric, malic, and phosphoric acid) and heat on foodborne pathogens (Escherichia coli O157:H7 and Listeria monocytogenes) in pureed green beans. To establish a consistent reference point for comparison, the molar concentrations of the acids remained constant while the acid-to-puree ratio, titratable acidity, and undissociated acid were either measured or calculated for a target acidified green beans at a pH of 3.8, 4.2, and 4.6. The D-values at 149°F were used as the criteria for acid efficacy. Generally, acetic acid (puree, pH 3.8 and 4.2) represented the most effective acid with comparatively low D-values irrespective of the target microorganism. A 10-s heating at 149°F inactivated approximately 106 CFU/ml of E. coli O157:H7 in pureed beans at pH 3.8. The efficacy of acetic acid is likely related to the elevated percent titratable acidity, undissociated acid, and acid-to-puree ratio. The effectiveness (which in this study represents the combined effect of acid and heat) of the remaining acids (citric, malic, and phosphoric) at puree pH values of 3.8 and 4.2 were statistically insignificant (α = 0.05). Surprisingly, acetic acid (puree, pH 4.6) appeared to be the least effective as compared to the other acids tested (citric, malic, and phosphoric) especially on E. coli O157:H7 cells, while L. monocytogenes had a similar resistance to all acids at puree pH 4.6. With the exception of citric acid (pH 3.8), acetic acid (pH 4.6), and malic acid (pH 3.8 and 4.6), which were statistically insignificant (P > 0.05), the D-values for L. monocytogenes were statistically different (P ≤ 0.05) and higher than the D-values for E. coli under similar experimental conditions. A conservative process recommendation (referred to as the “safe harbor” process) was found sufficient and applicable to pureed green beans for the pH range studied.


1996 ◽  
Vol 59 (4) ◽  
pp. 370-373 ◽  
Author(s):  
R. K. PODOLAK ◽  
J. F. ZAYAS ◽  
C. L. KASTNER ◽  
D. Y. C. FUNG

Lean beef surfaces were inoculated with Escherichia coli O157:H7 and Listeria monocytogenes and then sanitized with fumaric, acetic, or lactic acid alone and in combined solutions of those acids at 55°C for 5 s. The initial inoculum level was 8.62 log CFU/cm2 and 5.13 log CFU/cm2 for L. monocytogenes and E. coli O157:H7, respectively. Fumaric acid at a concentration of 1% was the most effective acid in reducing the populations of L. monocytogenes by up to 1 log unit and E. coli O157:H7 by up to 1.3 log units when compared with acetic or lactic acids. The rank order of acids tested against the growth of L. monocytogenes and E. coli O157:H7 was fumaric acid followed by lactic and acetic acids. Fumaric acid at concentrations of 1.0% and 1.5% was more effective than any of the combined solutions of acids.


2006 ◽  
Vol 69 (5) ◽  
pp. 1046-1055 ◽  
Author(s):  
MOUNIA OUSSALAH ◽  
STÉPHANE CAILLET ◽  
MONIQUE LACROIX

The mechanism of the antimicrobial action of Spanish oregano (Corydothymus capitatus), Chinese cinnamon (Cinnamomum cassia), and savory (Satureja montana) essential oils against cell membranes and walls of bacteria was studied by the measurement of the intracellular pH and ATP concentration, the release of cell constituents, and the electronic microscopy observations of the cells when these essential oils at their MICs were in contact with Escherichia coli O157:H7 and Listeria monocytogenes. E. coli O157:H7 and L. monocytogenes, two pathogenic foodborne bacteria, were used as gram-negative and gram-positive bacterial models, respectively. Treatment with these essential oils at their MICs affected the membrane integrity of bacteria and induced depletion of the intracellular ATP concentration. Spanish oregano and savory essential oils, however, induced more depletion than Chinese cinnamon oil. An increase of the extracellular ATP concentration was observed only when Spanish oregano and savory oils were in contact with E. coli O157:H7 and L. monocytogenes. Also, a significantly higher (P ≤0.05) cell constituent release was observed in the supernatant when E. coli O157:H7 and L. monocytogenes cells were treated with Chinese cinnamon and Spanish oregano oils. Chinese cinnamon oil was more effective to reduce significantly the intracellular pH of E. coli O157:H7, whereas Chinese cinnamon and Spanish oregano decreased more significantly the intracellular pH of L. monocytogenes. Electronic microscopy observations revealed that the cell membrane of both treated bacteria was significantly damaged. These results suggest that the cytoplasmic membrane is involved in the toxic action of essential oils.


2003 ◽  
Vol 66 (9) ◽  
pp. 1637-1641 ◽  
Author(s):  
MARA C. L. NOGUEIRA ◽  
OMAR A. OYARZÁBAL ◽  
DAVID E. GOMBAS

The production of thermally concentrated fruit juices uses temperatures high enough to achieve at least a 5-log reduction of pathogenic bacteria that can occur in raw juice. However, the transportation and storage of concentrates at low temperatures prior to final packaging is a common practice in the juice industry and introduces a potential risk for postconcentration contamination with pathogenic bacteria. The present study was undertaken to evaluate the likelihood of Escherichia coli O157: H7, Listeria monocytogenes and Salmonella surviving in cranberry, lemon, and lime juice concentrates at or above temperatures commonly used for transportation or storage of these concentrates. This study demonstrates that cranberry, lemon, and lime juice concentrates possess intrinsic antimicrobial properties that will eliminate these bacterial pathogens in the event of postconcentration recontamination. Bacterial inactivation was demonstrated under all conditions; at least 5-log Salmonella inactivation was consistently demonstrated at −23°C (−10°F), at least 5-log E. coli O157:H7 inactivation was consistently demonstrated at −11°C (12°F), and at least 5-log L. monocytogenes inactivation was consistently demonstrated at 0°C (32°F).


Sign in / Sign up

Export Citation Format

Share Document