Presence of Distractor Improves Time Estimation Performance in an Adult ADHD Sample

2016 ◽  
Vol 24 (11) ◽  
pp. 1530-1537 ◽  
Author(s):  
Clara Pretus ◽  
Marisol Picado ◽  
Antoni Ramos-Quiroga ◽  
Susanna Carmona ◽  
Vanessa Richarte ◽  
...  

Objective: It is widely accepted that patients with ADHD exhibit greater susceptibility to distractors, especially during tasks with higher working memory load demands. However, no study to date has specifically measured the impact of distractors on timing functions, although these have consistently shown alterations in ADHD. In this investigation, we aimed to elucidate the neural mechanisms mediating distractor effects on timing functions. Method: We employed a time estimation functional magnetic resonance imaging (fMRI) paradigm including a distracting element in half of the trials in a sample of 21 patients with ADHD and 24 healthy controls. Results: As expected, the effect of the distractor was greater in ADHD patients, where it was associated with increased orbitofrontal activity compared with controls. Behaviorally, time estimation performance benefited from the presence of distractors in both groups. In turn, such improvement correlated with medial frontal and insular activity in the brain. Conclusion: These results suggest that distractors could be stimulating recruitment of frontal resources in ADHD, thus contributing to increase focus on the task.

2009 ◽  
Vol 364 (1522) ◽  
pp. 1407-1416 ◽  
Author(s):  
Katherine Woollett ◽  
Hugo J. Spiers ◽  
Eleanor A. Maguire

While there is widespread interest in and admiration of individuals with exceptional talents, surprisingly little is known about the cognitive and neural mechanisms underpinning talent, and indeed how talent relates to expertise. Because many talents are first identified and nurtured in childhood, it can be difficult to determine whether talent is innate, can be acquired through extensive practice or can only be acquired in the presence of the developing brain. We sought to address some of these issues by studying healthy adults who acquired expertise in adulthood. We focused on the domain of memory and used licensed London taxi drivers as a model system. Taxi drivers have to learn the layout of 25 000 streets in London and the locations of thousands of places of interest, and pass stringent examinations in order to obtain an operating licence. Using neuropsychological assessment and structural and functional magnetic resonance imaging, we addressed a range of key questions: in the context of a fully developed brain and an average IQ, can people acquire expertise to an exceptional level; what are the neural signatures, both structural and functional, associated with the use of expertise; does expertise change the brain compared with unskilled control participants; does it confer any cognitive advantages, and similarly, does it come at a cost to other functions? By studying retired taxi drivers, we also consider what happens to their brains and behaviour when experts stop using their skill. Finally, we discuss how the expertise of taxi drivers might relate to the issue of talent and innate abilities. We suggest that exploring talent and expertise in this manner could have implications for education, rehabilitation of patients with cognitive impairments, understanding individual differences and possibly conditions such as autism where exceptional abilities can be a feature.


2006 ◽  
Vol 18 (3) ◽  
pp. 320-334 ◽  
Author(s):  
Thomas Fangmeier ◽  
Markus Knauff ◽  
Christian C. Ruff ◽  
Vladimir Sloutsky

Deductive reasoning is fundamental to science, human culture, and the solution of problems in daily life. It starts with premises and yields a logically necessary conclusion that is not explicit in the premises. Here we investigated the neurocognitive processes underlying logical thinking with event-related functional magnetic resonance imaging. We specifically focused on three temporally separable phases: (1) the premise processing phase, (2) the premise integration phase, and (3) the validation phase in which reasoners decide whether a conclusion logically follows from the premises. We found distinct patterns of cortical activity during these phases, with initial temporo-occipital activation shifting to the prefrontal cortex and then to the parietal cortex during the reasoning process. Activity in these latter regions was specific to reasoning, as it was significantly decreased during matched working memory problems with identical premises and equal working memory load.


2018 ◽  
Author(s):  
Yijie Zhao ◽  
Shuguang Kuai ◽  
Theodore P. Zanto ◽  
Yixuan Ku

AbstractThe neural mechanisms associated with the limited capacity of working memory has long been studied, but it is still unclear how the brain maintains the fidelity of representations in working memory. Here, an orientation recall task for estimating the precision of visual working memory was performed both inside and outside an fMRI scanner. Results showed that the trial-by-trial recall error (in radians) was correlated with delay period activity in the lateral occipital complex (LOC) during working memory maintenance, regardless of the memory load. Moreover, delay activity in LOC also correlated with the individual participant’s precision of working memory from a separate behavioral experiment held two weeks prior. Furthermore, a region within the prefrontal cortex, the inferior frontal junction (IFJ), exhibited greater functional connectivity with LOC when the working memory load increased. Together, our findings provide unique evidence that the LOC supports visual working memory precision, while communication between the IFJ and LOC varys with visual working memory load.


Author(s):  
Antonia Kaiser ◽  
Liesbeth Reneman ◽  
Paul J. Lucassen ◽  
Taco J. de Vries ◽  
Anouk Schrantee ◽  
...  

AbstractUnderstanding the neural mechanisms of emotional reactivity in Attention-Deficit/Hyperactivity Disorder (ADHD) may help develop more effective treatments that target emotion dysregulation. In adult ADHD, emotion regulation problems cover a range of dimensions, including emotional reactivity (ER). One important process that could underlie an impaired ER in ADHD might be impaired working memory (WM) processing. We recently demonstrated that taxing WM prior to the exposure of emotionally salient stimuli reduced physiological and subjective reactivity to such cues in heavy drinkers, suggesting lasting effects of WM activation on ER. Here, we investigated neural mechanisms that could underlie the interaction between WM and ER in adult ADHD participants. We included 30 male ADHD participants and 30 matched controls. Participants performed a novel functional magnetic resonance imaging paradigm in which active WM-blocks were alternated with passive blocks of negative and neutral images. We demonstrated group-independent significant main effects of negative emotional images on amygdala activation, and WM-load on paracingulate gyrus and dorsolateral prefrontal cortex activation. Contrary to earlier reports in adolescent ADHD, no impairments were found in neural correlates of WM or ER. Moreover, taxing WM did not alter the neural correlates of ER in either ADHD or control participants. While we did find effects on the amygdala, paCG, and dlPFC activation, we did not find interactions between WM and ER, possibly due to the relatively unimpaired ADHD population and a well-matched control group. Whether targeting WM might be effective in participants with ADHD with severe ER impairments remains to be investigated.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Florian Bitsch ◽  
Philipp Berger ◽  
Andreas Fink ◽  
Arne Nagels ◽  
Benjamin Straube ◽  
...  

AbstractThe ability to generate humor gives rise to positive emotions and thus facilitate the successful resolution of adversity. Although there is consensus that inhibitory processes might be related to broaden the way of thinking, the neural underpinnings of these mechanisms are largely unknown. Here, we use functional Magnetic Resonance Imaging, a humorous alternative uses task and a stroop task, to investigate the brain mechanisms underlying the emergence of humorous ideas in 24 subjects. Neuroimaging results indicate that greater cognitive control abilities are associated with increased activation in the amygdala, the hippocampus and the superior and medial frontal gyrus during the generation of humorous ideas. Examining the neural mechanisms more closely shows that the hypoactivation of frontal brain regions is associated with an hyperactivation in the amygdala and vice versa. This antagonistic connectivity is concurrently linked with an increased number of humorous ideas and enhanced amygdala responses during the task. Our data therefore suggests that a neural antagonism previously related to the emergence and regulation of negative affective responses, is linked with the generation of emotionally positive ideas and may represent an important neural pathway supporting mental health.


Author(s):  
Mark A Thornton ◽  
Diana I Tamir

Abstract The social world buzzes with action. People constantly walk, talk, eat, work, play, snooze and so on. To interact with others successfully, we need to both understand their current actions and predict their future actions. Here we used functional neuroimaging to test the hypothesis that people do both at the same time: when the brain perceives an action, it simultaneously encodes likely future actions. Specifically, we hypothesized that the brain represents perceived actions using a map that encodes which actions will occur next: the six-dimensional Abstraction, Creation, Tradition, Food(-relevance), Animacy and Spiritualism Taxonomy (ACT-FAST) action space. Within this space, the closer two actions are, the more likely they are to precede or follow each other. To test this hypothesis, participants watched a video featuring naturalistic sequences of actions while undergoing functional magnetic resonance imaging (fMRI) scanning. We first use a decoding model to demonstrate that the brain uses ACT-FAST to represent current actions. We then successfully predicted as-yet unseen actions, up to three actions into the future, based on their proximity to the current action’s coordinates in ACT-FAST space. This finding suggests that the brain represents actions using a six-dimensional action space that gives people an automatic glimpse of future actions.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yunqi Bu ◽  
Johannes Lederer

Abstract Graphical models such as brain connectomes derived from functional magnetic resonance imaging (fMRI) data are considered a prime gateway to understanding network-type processes. We show, however, that standard methods for graphical modeling can fail to provide accurate graph recovery even with optimal tuning and large sample sizes. We attempt to solve this problem by leveraging information that is often readily available in practice but neglected, such as the spatial positions of the measurements. This information is incorporated into the tuning parameter of neighborhood selection, for example, in the form of pairwise distances. Our approach is computationally convenient and efficient, carries a clear Bayesian interpretation, and improves standard methods in terms of statistical stability. Applied to data about Alzheimer’s disease, our approach allows us to highlight the central role of lobes in the connectivity structure of the brain and to identify an increased connectivity within the cerebellum for Alzheimer’s patients compared to other subjects.


2021 ◽  
pp. 174702182110263
Author(s):  
Philippe Blondé ◽  
Marco Sperduti ◽  
Dominique Makowski ◽  
Pascale Piolino

Mind wandering, defined as focusing attention toward task unrelated thoughts, is a common mental state known to impair memory encoding. This phenomenon is closely linked to boredom. Very few studies, however, have tested the potential impact of boredom on memory encoding. Thus, the present study aimed at manipulating mind wandering and boredom during an incidental memory encoding task, to test their differential impact on memory encoding. Thirty-two participants performed a variant of the n-back task in which they had to indicate if the current on-screen object was the same as the previous one (1-back; low working memory load) or the one presented three trials before (3-back; high working memory load). Moreover, thought probes assessing either mind wandering or boredom were randomly presented. Afterward, a surprise recognition task was delivered. Results showed that mind wandering and boredom were highly correlated, and both decreased in the high working memory load condition, while memory performance increased. Although both boredom and mind wandering predicted memory performance taken separately, we found that mind wandering was the only reliable predictor of memory performance when controlling for boredom and working memory load. Model comparisons also revealed that a model with boredom only was outperformed by a model with mind wandering only and a model with both mind wandering and boredom, suggesting that the predictive contribution of boredom in the complete model is minimal. The present results confirm the high correlation between mind wandering and boredom and suggest that the hindering effect of boredom on memory is subordinate to the effect of mind wandering.


Sign in / Sign up

Export Citation Format

Share Document