scholarly journals A Fluorescent Protein-Based Biological Screen of Proteinase Activity

2010 ◽  
Vol 15 (2) ◽  
pp. 224-229 ◽  
Author(s):  
Carly Huitema ◽  
Lindsay D. Eltis

A cell-based fluorescent protein reporter assay for proteinase activity amenable to high-throughput applications was developed. This assay is based on Förster resonance energy transfer (FRET) between 2 variants of the green fluorescent protein connected by a short cleavable linker and expressed in Escherichia coli as tagged proteins. A library to assay proteinase specificity was generated by randomizing a portion of the linker using PCR. The library could be grown in microplates, allowing cells to be lysed in situ and substrate cleavage to be monitored through loss of FRET signal using a plate reader. Progress curves were generated to estimate cleavage efficiency, facilitating the identification of well-cleaved substrates. The polyhistidine-tagged fluorescent substrates could then be purified and used for further characterization. To establish the general utility of the screen, it was used to demonstrate that the cysteine proteinase of the hepatitis A virus, 3Cpro, prefers Ile, Val, or Leu at the P4 position of the cleavage sequence and Gly, Ser, or Ala at the P′1 position. The assay can also be used to screen small-molecule libraries for inhibitors.

2001 ◽  
Vol 357 (3) ◽  
pp. 687-697 ◽  
Author(s):  
Jonathan P. WAUD ◽  
Alexandra BERMÚDEZ FAJARDO ◽  
Thankiah SUDHAHARAN ◽  
Andrew R. TRIMBY ◽  
Jinny JEFFERY ◽  
...  

Homogeneous assays, without a separation step, are essential for measuring chemical events in live cells and for drug discovery screens, and are desirable for making measurements in cell extracts or clinical samples. Here we demonstrate the principle of chemiluminescence resonance energy transfer (CRET) as a homogeneous assay system, using two proteases as models, one extracellular (α-thrombin) and the other intracellular (caspase-3). Chimaeras were engineered with aequorin as the chemiluminescent energy donor and green fluorescent protein (GFP) or enhanced GFP as the energy acceptors, with a protease linker (6 or 18 amino acid residues) recognition site between the donor and acceptor. Flash chemiluminescent spectra (20–60 s) showed that the spectra of chimaeras matched GFP, being similar to that of luminous jellyfish, justifying their designation as ‘Rainbow’ proteins. Addition of the protease shifted the emission spectrum to that of aequorin in a time- and dose-dependent manner. Separation of the proteolysed fragments showed that the ratio of green to blue light matched the extent of proteolysis. The caspase-3 Rainbow protein was able to provide information on the specificity of caspases in vitro and in vivo. It was also able to monitor caspase-3 activation in cells provoked into apoptosis by staurosporine (1 or 2μM). CRET can also monitor GFP fluor formation. The signal-to-noise ratio of our Rainbow proteins is superior to that of fluorescence resonance energy transfer, providing a potential platform for measuring agents that interact with the reactive site between the donor and acceptor.


2015 ◽  
Vol 29 (11) ◽  
pp. 1619-1633 ◽  
Author(s):  
Brent M. Molden ◽  
Kimberly A. Cooney ◽  
Kirk West ◽  
Lex H. T. Van Der Ploeg ◽  
Giulia Baldini

Abstract The melanocortin-4 receptor (MC4R) is a G protein-coupled receptor expressed in the brain, where it controls energy balance through pathways including α-melanocyte-stimulating hormone (α-MSH)-dependent signaling. We have reported that the MC4R can exist in an active conformation that signals constitutively by increasing cAMP levels in the absence of receptor desensitization. We asked whether synthetic MC4R agonists differ in their ability to increase intracellular cAMP over time in Neuro2A cells expressing endogenous MC4R and exogenous, epitope-tagged hemagglutinin-MC4R-green fluorescent protein. By analyzing intracellular cAMP in a temporally resolved Förster resonance energy transfer assay, we show that withdrawal of α-MSH leads to a quick reversal of cAMP induction. By contrast, the synthetic agonist melanotan II (MTII) induces a cAMP signal that persists for at least 1 hour after removal of MTII from the medium and cannot be antagonized by agouti related protein. Similarly, in mHypoE-42 immortalized hypothalamic neurons, MTII, but not α-MSH, induced persistent AMP kinase signal, which occurs downstream of increased cAMP. By using a fluorescence recovery after photobleaching assay, it appears that the receptor exposed to MTII continues to signal after being internalized. Similar to MTII, the synthetic MC4R agonists, THIQ and BIM-22511, but not LY2112688, induced prolonged cAMP signaling after agonist withdrawal. However, agonist-exposed MC4R desensitized to the same extent, regardless of the ligand used and regardless of differences in receptor intracellular retention kinetics. In conclusion, α-MSH and LY2112688, when compared with MTII, THIQ, and BIM-22511, vary in the duration of the acute cAMP response, showing distinct temporal signaling selectivity, possibly linked to specific cell compartments from which cAMP signals may originate.


2021 ◽  
Author(s):  
Ningke Hou ◽  
Chen Peng ◽  
Lijing Zhang ◽  
Yuyao Zhu ◽  
Qi Hu

The 3C-like protease (3CLpro) of SARS-CoV-2 is an attractive drug target for developing antivirals against SARS-CoV-2. A few small molecule inhibitors of 3CLpro are in clinical trials for COVID-19 treatments and more inhibitors are being developed. One limiting factor for 3CLpro inhibitors development is that the cellular activities of such inhibitors have to be evaluated in a Biosafety Level 3 (BSL-3) or BSL-4 laboratory. Here, we design genetically encoded biosensors that can be used in BSL-2 laboratories to set up cell-based assays for 3CLpro inhibitor discovery. The biosensors were constructed by linking a green fluorescent protein (GFP2) to the N-terminus and a Renilla luciferase (RLuc8) to the C-terminus of SARS-CoV-2 3CLpro, with the linkers derived from the cleavage sequences of 3CLpro. After over-expression of the biosensors in HEK293 cells, 3CLpro can be released from GFP2 and RLuc by self-cleavage, resulting in a decrease of the bioluminescence resonance energy transfer (BRET) signal. Using one of these biosensors, pBRET-10, we evaluated the cellular activities of several 3CLpro inhibitors. These inhibitors restored the BRET signal by blocking the proteolysis of pBRET-10, and their relative activities measured using pBRET-10 were consistent with their anti-SARS-CoV-2 activities reported previously. We conclude that the biosensor pBRET-10 is a useful tool for SARS-CoV-2 3CLpro inhibitor discovery. Furthermore, our strategy can be used to design biosensors for other viral proteases that share the same activation mechanism as 3CLpro, such as HIV protease PR and HCV protease NS3.


2021 ◽  
Vol 118 (6) ◽  
pp. e2020235118
Author(s):  
Therese C. Alich ◽  
Milan Pabst ◽  
Leonie Pothmann ◽  
Bálint Szalontai ◽  
Guido C. Faas ◽  
...  

Voltage sensing with genetically expressed optical probes is highly desirable for large-scale recordings of neuronal activity and detection of localized voltage signals in single neurons. Most genetically encodable voltage indicators (GEVI) have drawbacks including slow response, low fluorescence, or excessive bleaching. Here we present a dark quencher GEVI approach (dqGEVI) using a Förster resonance energy transfer pair between a fluorophore glycosylphosphatidylinositol–enhanced green fluorescent protein (GPI-eGFP) on the outer surface of the neuronal membrane and an azo-benzene dye quencher (D3) that rapidly moves in the membrane driven by voltage. In contrast to previous probes, the sensor has a single photon bleaching time constant of ∼40 min, has a high temporal resolution and fidelity for detecting action potential firing at 100 Hz, resolves membrane de- and hyperpolarizations of a few millivolts, and has negligible effects on passive membrane properties or synaptic events. The dqGEVI approach should be a valuable tool for optical recordings of subcellular or population membrane potential changes in nerve cells.


2020 ◽  
Vol 44 (6) ◽  
pp. 393-405
Author(s):  
Elif Sibel ASLAN ◽  
Kenneth N. WHITE ◽  
Basharut A. SYED ◽  
Kaila S. SRAI ◽  
Robert W. EVANS

Hephaestin (Hp) is a trans-membrane protein, which plays a critical role in intestinal iron absorption. Hp was originally identified as the gene responsible for the phenotype of sex-linked anaemia in the sla mouse. The mutation in the sla protein causes ac-cumulation of dietary iron in duodenal cells, causing severe microcytic hypochromic anaemia. Although mucosal uptake of dietary iron is normal, export from the duodenum is inhibited. Hp is homologous to ceruloplasmin (Cp), a member of the family of multi copper fer-roxidases (MCFs) and possesses ferroxidase activity that facilitates iron release from the duodenum and load onto the serum iron trans-port protein transferrin. In the present study, attempts were made to produce biologically active recombinant mouse hephaestin as a secretory form tagged with green fluorescent protein (GFP), Hpsec-GFP. Plasmid expressing Hpsec-GFP was constructed and transfected into COS and CHO cells. The GFP aided the monitoring expression in real time to select the best conditions to maximise expression and provided a tag for purifying and analysing Hpsec-GFP. The protein had detectable oxidase activity as shown by in-gel and solution-based assays. The methods described here can provide the basis for further work to probe the interaction of hephaestin with other proteins using complementary fluorescent tags on target proteins that would facilitate the fluorescence resonance energy transfer measurements, for example with transferrin or colocalisation studies, and help to discover more about hephaestin works at the molecular level.


Sign in / Sign up

Export Citation Format

Share Document