scholarly journals Challenges and Opportunities in High Throughput Screening: Implications for New Technologies

1998 ◽  
Vol 3 (1) ◽  
pp. 13-17 ◽  
Author(s):  
John Major

In response to mounting competitive pressures, the current trend in the pharmaceutical industry is to shorten the time scale for all aspects of drug discovery. While advances in computation, structural chemistry, and molecular modeling are facilitating rational design activities, empirical screening continues to play a crucial role in lead identification. Because the ability to test large numbers of compounds quickly and efficiently can provide a competitive advantage, high throughput screening (HTS) has become a key tool in many companies. To achieve the necessary productivity, effective integration of compound supply, assay operation and data management is essential. HTS is a very high technology enterprise that must take full advantage of the latest advances in bioscience, biotechnology, engineering, and information science. There is a constant dilemma, however, in relation to when well-established, mature technologies should be replaced by new methods that promise to deliver spectacular advantages. The final decision must be based on weighing the promised benefit against the cost and risk. While huge challenges face the pharmaceutical industry, there are also opportunities for those companies that can identify and implement new technology effectively.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhou Fang ◽  
Junjian Chen ◽  
Ye Zhu ◽  
Guansong Hu ◽  
Haoqian Xin ◽  
...  

AbstractPeptides are widely used for surface modification to develop improved implants, such as cell adhesion RGD peptide and antimicrobial peptide (AMP). However, it is a daunting challenge to identify an optimized condition with the two peptides showing their intended activities and the parameters for reaching such a condition. Herein, we develop a high-throughput strategy, preparing titanium (Ti) surfaces with a gradient in peptide density by click reaction as a platform, to screen the positions with desired functions. Such positions are corresponding to optimized molecular parameters (peptide densities/ratios) and associated preparation parameters (reaction times/reactant concentrations). These parameters are then extracted to prepare nongradient mono- and dual-peptide functionalized Ti surfaces with desired biocompatibility or/and antimicrobial activity in vitro and in vivo. We also demonstrate this strategy could be extended to other materials. Here, we show that the high-throughput versatile strategy holds great promise for rational design and preparation of functional biomaterial surfaces.


Author(s):  
Palanivel Kuppusamy

Smart education is now a typical feature in education emerging from information communications technologies (ICT) and the constant introduction of new technologies into institutional learning. The smart classroom aims users to develop skills, adapt, and use technologies in a learning context that produces elevated learning outcomes which leads to big data. The internet of things (IoT) is a new technology in which objects equipped with sensors, actuators, and processors communicate with each other to serve a meaningful purpose. The technologies are rapidly changing, and designing for these situations can be complex. Designing the IoT applications is a challenging issue. The existing standardization activities are often redundant IoT development. The reference architecture provides a solution to smart education for redundant design activities. The purpose of this chapter is to look at the requirements and architectures required for smart education. It is proposed to design a scalable and flexible IoT architecture tor smart education (IoTASE).


Catalysts ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 935
Author(s):  
Sarah Maxel ◽  
Linyue Zhang ◽  
Edward King ◽  
Ana Paula Acosta ◽  
Ray Luo ◽  
...  

Cyclohexanone monooxygenase (CHMO) from Acinetobacter sp. NCIMB 9871 is characterized as having wide substrate versatility for the biooxidation of (cyclic) ketones into esters and lactones with high stereospecificity. Despite industrial potential, CHMO usage is restricted by poor thermostability. Limited high-throughput screening tools and challenges in rationally engineering thermostability have impeded CHMO engineering efforts. We demonstrate the application of an aerobic, high-throughput growth selection platform in Escherichia coli (strain MX203) for the discovery of thermostability enhancing mutations for CHMO. The selection employs growth for the easy readout of CHMO activity in vivo, by requiring nicotinamide adenine dinucleotide phosphate (NADPH)-consuming enzymes to restore cellular redox balance. In the presence of the native substrate cyclohexanone, variant CHMO GV (A245G-A288V) was discovered from a random mutagenesis library screened at 42 °C. This variant retained native activity, exhibited ~4.4-fold improvement in residual activity after 30 °C incubation, and demonstrated ~5-fold higher cyclohexanone conversion at 37 °C compared to the wild type. Molecular modeling indicates that CHMO GV experiences more favorable residue packing and supports additional backbone hydrogen bonding. Further rational design resulted in CHMO A245G-A288V-T415C with improved thermostability at 45 °C. Our platform for oxygenase evolution enabled the rapid engineering of protein stability critical for industrial scalability.


RSC Advances ◽  
2018 ◽  
Vol 8 (45) ◽  
pp. 25409-25416 ◽  
Author(s):  
Yong Luo ◽  
Xiuli Zhang ◽  
Yujiao Li ◽  
Jiu Deng ◽  
Xiaorui Li ◽  
...  

In vitro models for screening of drugs against type 2 diabetes are crucial for the pharmaceutical industry.


2014 ◽  
Vol 5 (10) ◽  
pp. 4012-4016 ◽  
Author(s):  
Pengwei Jin ◽  
Changhong Jiao ◽  
Zhiqian Guo ◽  
Ye He ◽  
Shiqin Zhu ◽  
...  

A rational design of turn-on fluorescent chemosensors for monitoring α-ketoglutaric acid has been developed with a microfluidic chip, indicative of a potential platform for high-throughput screening and monitoring of kinetics, especially in biological fields.


2021 ◽  
pp. 247255522110262
Author(s):  
Nathan P. Coussens ◽  
Douglas S. Auld ◽  
Jonathan R. Thielman ◽  
Bridget K. Wagner ◽  
Jayme L. Dahlin

Compound-dependent assay interferences represent a continued burden in drug and chemical probe discovery. The open-source National Institutes of Health/National Center for Advancing Translational Sciences (NIH/NCATS) Assay Guidance Manual (AGM) established an “Assay Artifacts and Interferences” section to address different sources of artifacts and interferences in biological assays. In addition to the frequent introduction of new chapters in this important topic area, older chapters are periodically updated by experts from academia, industry, and government to include new technologies and practices. Section chapters describe many best practices for mitigating and identifying compound-dependent assay interferences. Using two previously reported biochemical high-throughput screening campaigns for small-molecule inhibitors of the epigenetic targets Rtt109 and NSD2, the authors review best practices and direct readers to high-yield resources in the AGM and elsewhere for the mitigation and identification of compound-dependent reactivity and aggregation assay interferences.


Author(s):  
Daniel Conole ◽  
James H Hunter ◽  
Michael J Waring

DNA-encoded combinatorial libraries (DECLs) represent an exciting new technology for high-throughput screening, significantly increasing its capacity and cost–effectiveness. Historically, DECLs have been the domain of specialized academic groups and industry; however, there has recently been a shift toward more drug discovery academic centers and institutes adopting this technology. Key to this development has been the simplification, characterization and standardization of various DECL subprotocols, such as library design, affinity screening and data analysis of hits. This review examines the feasibility of implementing DECL screening technology as a first-time user, particularly in academia, exploring the some important considerations for this, and outlines some applications of the technology that academia could contribute to the field.


Sign in / Sign up

Export Citation Format

Share Document