The influences of bump foil structure parameters on the static and dynamic characteristics of bump-type gas foil bearings

Author(s):  
Haojie Xu ◽  
Jiapeng Yang ◽  
Lei Gao ◽  
Qi An

Bump-type gas foil bearing is a special type of sliding bearing, especially suitable for supporting rotors with light loads and high speeds. In this paper, a deformation model of bump foil is established by using elastic mechanics theory. A fluid-structure interaction algorithm is proposed according to Reynolds equation of compressible gas. On this basis, a method for calculating the static and dynamic characteristics of the bump-type gas foil bearing is established considering the structure parameters of the bump foil. The presented model is validated using the data reported in the existing research. The gas film pressure distribution, gas film thickness distribution of the bearing, and the influences of bump foil structure parameters on the static and dynamic characteristics of the bearing are studied with an example. Results show that, decreasing the bump foil thickness tB or increasing the bump pitch s will increase the limiting load-carrying capacity W and decrease the attitude angle β. And increasing tB or decreasing s will decrease the friction torque Tr and increase the side leakage flow of gas Qz, resulting in less friction heat generation and faster heat dissipation. Increasing tB or decreasing s will increase the absolute values of [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] of the gas film, leading to higher equivalent stiffness of the gas film [Formula: see text].

Author(s):  
Guanghui Zhang ◽  
Kefan Xu ◽  
Jiazhen Han ◽  
Yanzhong Huang ◽  
Wenjie Gong ◽  
...  

Both foil structure and surface texturing have been widely used to improve bearing performance. However, there is little research on their combination, namely, textured gas foil bearing. This paper adopts the Reynolds equation as the pressure governing equation of bump-type foil journal bearing to study the influence of textures located on the top foil. The Newton-Raphson iterative method and the perturbation method are employed to obtain static and dynamic characteristics, respectively. Thereafter, based on three texture distribution types, further analysis about the effect of the relative texture depth and the textured portion is carried out. The results indicate that an appropriate arrangement of textures could improve the performance of gas foil bearing. For #1 texture distribution, the maximum increment of load capacity could exceed 10% when ω  =  1.4 × 105 r/min, ε  =  0.2.


Author(s):  
Hiromu Hashimoto ◽  
Masayukl Ochiai

Abstract Hydrodynamic gas film bearings are used for supporting high-speed, lightly loaded rotating machinery. Stepped type gas film bearings are often used for such machinery because of their simple structure, high stability and load carrying capacity. This paper describes the measurements of compressibility effects on the static and dynamic characteristics of stepped thrust gas film bearings. In the experiments, the minimum film thickness, friction torque on the bearing surface and stiffness and damping coefficients of gas films are measured for a range of rotational speed from 10,000 rpm to 20,000 rpm under a constant stator mass and a fixed step height. The measured data are compared with the theoretical results and the gas film compressibility effects on the static and dynamic characteristics of the bearings are discussed. The experimental results agree well with the predicted results based on the compressible lubrication theory.


Author(s):  
Shigehiko Kaneko ◽  
Xiaoshan Wu

Dynamic pressure type foil bearings are expected to serve as shaft bearings for Micro Gas Turbines (MGT). In this study, in order to establish design guidelines of radial foil bearings, dynamical modeling of multi wounded foil bearing was carried out employing leakage flow induced vibration theory. Taking frictional forces due to attached part of the foil and the protrusion, etc. into consideration, static and dynamic characteristics were analyzed to examine the performance and the stability of radial foil bearings.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
M. M. Nemat-Alla ◽  
A. M. Gad ◽  
A. A. Khalil ◽  
A. M. Nasr

Recently, herringbone-grooved journal bearings (HGJBs) have important applications in high-speed rotating machinery. The groove action in pumping the lubricating fluid inward generates supporting stiffness and improves the stability of the bearing when operating concentrically. Several researchers have investigated the static and dynamic characteristics of HGJBs and grooved thrust bearings. Most of these investigations were theoretical and concentrated on HGJBs with rectangular-profile grooves. In the present work, the static and dynamic characteristics of the beveled-step HGJBs are experimentally investigated. The bearing attitude angle, pressure distribution, and bearing friction torque were measured on a hydrodynamic lubrication unit, and then the static and dynamic characteristics were determined. The obtained experimental results are compared to the obtained experimental results for plain journal bearing. The merits as well as the demerits of the groove profile were discussed through comparisons with plain journal bearings.


1998 ◽  
Vol 08 (PR3) ◽  
pp. Pr3-81-Pr3-86
Author(s):  
F. Aniel ◽  
N. Zerounian ◽  
A. Gruhle ◽  
C. Mähner ◽  
G. Vernet ◽  
...  

2011 ◽  
Vol 418-420 ◽  
pp. 2055-2059 ◽  
Author(s):  
Yu Lin Wang ◽  
Na Jin ◽  
Kai Liao ◽  
Rui Jin Guo ◽  
Hu Tian Feng

The head frame is a key component which plays a supportive and accommodative role in the spindle system of CNC machine tool. Improving the static and dynamic characteristics has profound significance to the development of machine tool and product performance. The simplified finite element modal is established with ANSYS to carry out the static and modal analysis. The results showed that the maximum deformation of the head frame was 0.0066mm, the maximum stress was 3.94Mpa, the deformation of most region was no more than 0.0007mm, which all verified that the head frame had a good stiffness and deforming resistance; several improvement measures for dynamic performance were also proposed by analyzing the mode shapes, and the 1st order natural frequency increased 7.33% while the head frame mass only increased 1.58% applying the optimal measure, which improved the dynamic characteristics of the head frame effectively.


Sign in / Sign up

Export Citation Format

Share Document