scholarly journals Application of topological optimisation methodology to hydrodynamic thrust bearings

Author(s):  
Kalle Kalliorinne ◽  
Roland Larsson ◽  
Andreas Almqvist

The bearing geometry has a big impact on the performance of a hydrodynamic thrust bearing. For this reason, shape optimisation of the bearing surface has been carried out for some time, with Lord Rayleigh’s early publication dated back to 1918. There are several recent results e.g. optimal bearing geometries that maximise the load carrying capacity for hydrodynamic thrust bearings. Currently, many engineers are making an effort to include sustainability in their work, which increases the need for bearings with lower friction and higher load carrying capacity. Improving these two qualities will result in lower energy consumption and increase the lifetime of applications, which are outcomes that will contribute to a sustainable future. For this reason, there is a need to find geometries that have performance characteristics of as low coefficient of friction torque as possible. In this work, the topological optimisation method of moving asymptotes is employed to optimise bearing geometries with the objective of minimising the coefficient of friction torque. The results are both optimised bearing geometries that minimise the coefficient of friction torque and bearing geometries that maximise the load carrying capacity. The bearing geometries are of comparable aspect ratios to the ones uses in recent publications. The present article also covers minimisation of friction torque on ring bearing geometries, also known as thrust washers. The results are thrust washers with periodical geometries, where the number of periodical segments has a high impact on the geometrical outcome.

1959 ◽  
Vol 26 (3) ◽  
pp. 337-340
Author(s):  
C. F. Kettleborough

Abstract The problem of the stepped-thrust bearing is considered but, whereas normally volumetric continuity is assumed, the equations are solved assuming mass continuity; i.e., the variation of density is also considered as well as the effect of the stepped discontinuity on the load-carrying capacity and the coefficient of friction. Computed theoretical curves illustrate the importance of the density on the operation of this bearing and, in part, explain results already published.


Author(s):  
Sanjay Sharma ◽  
Aniket Sharma ◽  
Gourav Jamwal ◽  
Rajeev Kumar Awasthi

The present comparative numerical study is between V-shape protruded, dimple textured, and untextured bearing. The performance parameters in terms of the load-carrying capacity and coefficient of friction are computed by solving governing Reynold’s equation of the lubricant fluid flow. The governing equation is solved by the finite element method by assuming that the fluid is Newtonian and isoviscous in nature. The effect of eccentricity ratios, texture distribution, texture heights, and texture depths are considered for the analysis in both textured bearings. From simulated results, the load-carrying capacity and coefficient of friction is found to be maximum for protruded textured bearing in full textured region and first half-textured region respectively as compared to untextured bearings. Finally, optimal operating and geometrical parameters of textured bearing is obtained by computing performance enhancement ratio, which is the ratio of the load-carrying capacity to the coefficient of friction. The maximum value of the performance enhancement ratio is found for protruded and dimple textured bearing in full texturing and second half-region corresponding to the eccentricity ratio of 0.8 and 0.6 respectively at texture height and depth of 0.4.


Author(s):  
Kalle Kalliorinne ◽  
Andreas Almqvist

The search for the optimal bearing geometry has been on for over a century. In a publication from 1918, Lord Rayleigh revealed the infinitely wide bearing geometry that maximises the load carrying capacity under incompressible flow, i.e. the Rayleigh step bearing. Four decades ago, Rohde, who continued on the same path, revealed the finitely wide bearing geometry that maximises the load carrying capacity, referred to as the Rayleigh-pocket bearing. Since then, the numerical results have been perfected with highly refined meshes, all converging to the same Rayleigh-pocket bearing. During recent years new methods for performing topology optimisations have been developed and one of those is the method of moving asymptotes, frequently used in the area of structural mechanics. In this work, the method of moving asymptotes is employed to find optimal bearing geometries under incompressible flow, for three different objectives. Among the results obtained are (i) show new bearing geometries that maximise the load carrying capacity, which performs better than the ones available, (ii) new bearing geometries minimising the coefficient of friction and (iii) new bearing geometries minimising the friction force for a given load carrying capacity are presented as well.


Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 329 ◽  
Author(s):  
Wei Tang ◽  
Chuang Yu ◽  
Shaogang Zhang ◽  
Songyong Liu ◽  
Xingcai Wu ◽  
...  

In this study, the tribological behavior of lamellar ZrS2 nanobelts as lubricant additives was investigated under different concentrations, normal load, velocity, and temperature. The friction and wear tests were performed using a tribometer and with a reciprocating motion. The results indicate that the lamellar ZrS2 nanobelt additives can effectively reduce the coefficient of friction and running-in time during the running-in period. With the addition of ZrS2, the wear volumes decrease significantly. The wear is mostly influenced by the tribological performance throughout the running-in period. The lower the running-in time and coefficient of friction are during the running-in period, the less amount of wear is shown. ZrS2 can significantly increase the load-carrying capacity of oil. The 1.0 wt% concentration of ZrS2 yields the best antifriction effect, antiwear performance, and load-carrying capacity. The ZrS2 additives can increase the working temperature of the oil. The friction-reducing and antiwear mechanisms of lamellar ZrS2 were discussed.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
C. I. Papadopoulos ◽  
L. Kaiktsis ◽  
M. Fillon

The paper presents a detailed computational study of flow patterns and performance indices in a dimpled parallel thrust bearing. The bearing consists of eight pads; the stator surface of each pad is partially textured with rectangular dimples, aiming at maximizing the load carrying capacity. The bearing tribological performance is characterized by means of computational fluid dynamics (CFD) simulations, based on the numerical solution of the Navier–Stokes and energy equations for incompressible flow. Realistic boundary conditions are implemented. The effects of operating conditions and texture design are studied for the case of isothermal flow. First, for a reference texture pattern, the effects of varying operating conditions, in particular minimum film thickness (thrust load), rotational speed and feeding oil pressure are investigated. Next, the effects of varying texture geometry characteristics, in particular texture zone circumferential/radial extent, dimple depth, and texture density on the bearing performance indices (load carrying capacity, friction torque, and friction coefficient) are studied, for a representative operating point. For the reference texture design, the effects of varying operating conditions are further investigated, by also taking into account thermal effects. In particular, adiabatic conditions and conjugate heat transfer at the bearing pad are considered. The results of the present study indicate that parallel thrust bearings textured by proper rectangular dimples are characterized by substantial load carrying capacity levels. Thermal effects may significantly reduce load capacity, especially in the range of high speeds and high loads. Based on the present results, favorable texture designs can be assessed.


2012 ◽  
Vol 58 (2) ◽  
Author(s):  
T. V. V. L. N. Rao ◽  
A. M. A. Rani ◽  
T. Nagarajan ◽  
F. M. Hashim

The present study examines the influence of partial texturing of bearing surfaces on improvement in load capacity and reduction in friction coefficient for slider and journal bearing. The geometry of partially textured slider and journal bearing considered in this work composed of a number of successive regions of groove and land configurations. The nondimensional pressure expressions for the partially textured slider and journal bearing are derived taking into consideration of texture geometry and extent of partial texture. Partial texturing has a potential to generate load carrying capacity and reduce coefficient of friction, even for nominally parallel bearing surfaces.


Author(s):  
Jijo Jose ◽  
Niranjana Behera

Hydrodynamic oil bearings applied at elevated temperatures and extreme operating conditions are subjected to the problem of oil degradation. In order to overcome such conditions, dry powder lubricants are used as lubricants in the hydrodynamic journal bearings. Thus the problem of thermal degradation of oil at high temperatures can be eliminated. In this work, the static and dynamic characteristics of a symmetric three-lobed bearing lubricated with powdered particles have been predicted. Influence of the ellipticity ratio on the performance of the three-lobed bearing has also been investigated. It is observed that an increase in the ellipticity ratio increases the coefficient of friction and stability, but decreases the side leakage and the load carrying capacity of the three-lobed bearing. Also, it was observed that the large-sized powdered particles induce better load carrying capacity and better stability than the small-sized particles.


1972 ◽  
Vol 94 (1) ◽  
pp. 44-48 ◽  
Author(s):  
E. B. Qvale ◽  
F. R. Wiltshire

The effects of prescribed viscosity variations across a hydrodynamic lubricating film are studied. The film is strictly one dimensional and end effects are neglected. The viscosity variations are given by three families of curves. The considerable decreases (in the limit 100 percent) and occasional increases in the coefficient of friction that can occur for constant film thickness and load-carrying capacity are evaluated and the results are presented in terms of parametric curves. Important physical situations where these viscosity variations may be observed or produced are described.


Author(s):  
P Samanta ◽  
MM Khonsari

A simple procedure is proposed for predicting the limiting pressure and corresponding limiting of the load-carrying capacity of a foil thrust bearing. A closed-form analytical solution for the limiting load is derived, and the predictions are verified by the numerical solution. An approximate solution for limiting thrust load is also obtained and compared to the value obtained through the analytical solution. A parametric analysis is performed to examine the dependency of the limiting load on different geometric parameters for the bearing.


Sign in / Sign up

Export Citation Format

Share Document