The effect of V-shape protruded and dimple textured on the load-carrying capacity and coefficient of friction of hydrodynamic journal bearing: A comparative numerical study

Author(s):  
Sanjay Sharma ◽  
Aniket Sharma ◽  
Gourav Jamwal ◽  
Rajeev Kumar Awasthi

The present comparative numerical study is between V-shape protruded, dimple textured, and untextured bearing. The performance parameters in terms of the load-carrying capacity and coefficient of friction are computed by solving governing Reynold’s equation of the lubricant fluid flow. The governing equation is solved by the finite element method by assuming that the fluid is Newtonian and isoviscous in nature. The effect of eccentricity ratios, texture distribution, texture heights, and texture depths are considered for the analysis in both textured bearings. From simulated results, the load-carrying capacity and coefficient of friction is found to be maximum for protruded textured bearing in full textured region and first half-textured region respectively as compared to untextured bearings. Finally, optimal operating and geometrical parameters of textured bearing is obtained by computing performance enhancement ratio, which is the ratio of the load-carrying capacity to the coefficient of friction. The maximum value of the performance enhancement ratio is found for protruded and dimple textured bearing in full texturing and second half-region corresponding to the eccentricity ratio of 0.8 and 0.6 respectively at texture height and depth of 0.4.

1959 ◽  
Vol 26 (3) ◽  
pp. 337-340
Author(s):  
C. F. Kettleborough

Abstract The problem of the stepped-thrust bearing is considered but, whereas normally volumetric continuity is assumed, the equations are solved assuming mass continuity; i.e., the variation of density is also considered as well as the effect of the stepped discontinuity on the load-carrying capacity and the coefficient of friction. Computed theoretical curves illustrate the importance of the density on the operation of this bearing and, in part, explain results already published.


Author(s):  
Kalle Kalliorinne ◽  
Roland Larsson ◽  
Andreas Almqvist

The bearing geometry has a big impact on the performance of a hydrodynamic thrust bearing. For this reason, shape optimisation of the bearing surface has been carried out for some time, with Lord Rayleigh’s early publication dated back to 1918. There are several recent results e.g. optimal bearing geometries that maximise the load carrying capacity for hydrodynamic thrust bearings. Currently, many engineers are making an effort to include sustainability in their work, which increases the need for bearings with lower friction and higher load carrying capacity. Improving these two qualities will result in lower energy consumption and increase the lifetime of applications, which are outcomes that will contribute to a sustainable future. For this reason, there is a need to find geometries that have performance characteristics of as low coefficient of friction torque as possible. In this work, the topological optimisation method of moving asymptotes is employed to optimise bearing geometries with the objective of minimising the coefficient of friction torque. The results are both optimised bearing geometries that minimise the coefficient of friction torque and bearing geometries that maximise the load carrying capacity. The bearing geometries are of comparable aspect ratios to the ones uses in recent publications. The present article also covers minimisation of friction torque on ring bearing geometries, also known as thrust washers. The results are thrust washers with periodical geometries, where the number of periodical segments has a high impact on the geometrical outcome.


Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 329 ◽  
Author(s):  
Wei Tang ◽  
Chuang Yu ◽  
Shaogang Zhang ◽  
Songyong Liu ◽  
Xingcai Wu ◽  
...  

In this study, the tribological behavior of lamellar ZrS2 nanobelts as lubricant additives was investigated under different concentrations, normal load, velocity, and temperature. The friction and wear tests were performed using a tribometer and with a reciprocating motion. The results indicate that the lamellar ZrS2 nanobelt additives can effectively reduce the coefficient of friction and running-in time during the running-in period. With the addition of ZrS2, the wear volumes decrease significantly. The wear is mostly influenced by the tribological performance throughout the running-in period. The lower the running-in time and coefficient of friction are during the running-in period, the less amount of wear is shown. ZrS2 can significantly increase the load-carrying capacity of oil. The 1.0 wt% concentration of ZrS2 yields the best antifriction effect, antiwear performance, and load-carrying capacity. The ZrS2 additives can increase the working temperature of the oil. The friction-reducing and antiwear mechanisms of lamellar ZrS2 were discussed.


2012 ◽  
Vol 58 (2) ◽  
Author(s):  
T. V. V. L. N. Rao ◽  
A. M. A. Rani ◽  
T. Nagarajan ◽  
F. M. Hashim

The present study examines the influence of partial texturing of bearing surfaces on improvement in load capacity and reduction in friction coefficient for slider and journal bearing. The geometry of partially textured slider and journal bearing considered in this work composed of a number of successive regions of groove and land configurations. The nondimensional pressure expressions for the partially textured slider and journal bearing are derived taking into consideration of texture geometry and extent of partial texture. Partial texturing has a potential to generate load carrying capacity and reduce coefficient of friction, even for nominally parallel bearing surfaces.


Author(s):  
Jijo Jose ◽  
Niranjana Behera

Hydrodynamic oil bearings applied at elevated temperatures and extreme operating conditions are subjected to the problem of oil degradation. In order to overcome such conditions, dry powder lubricants are used as lubricants in the hydrodynamic journal bearings. Thus the problem of thermal degradation of oil at high temperatures can be eliminated. In this work, the static and dynamic characteristics of a symmetric three-lobed bearing lubricated with powdered particles have been predicted. Influence of the ellipticity ratio on the performance of the three-lobed bearing has also been investigated. It is observed that an increase in the ellipticity ratio increases the coefficient of friction and stability, but decreases the side leakage and the load carrying capacity of the three-lobed bearing. Also, it was observed that the large-sized powdered particles induce better load carrying capacity and better stability than the small-sized particles.


1972 ◽  
Vol 94 (1) ◽  
pp. 44-48 ◽  
Author(s):  
E. B. Qvale ◽  
F. R. Wiltshire

The effects of prescribed viscosity variations across a hydrodynamic lubricating film are studied. The film is strictly one dimensional and end effects are neglected. The viscosity variations are given by three families of curves. The considerable decreases (in the limit 100 percent) and occasional increases in the coefficient of friction that can occur for constant film thickness and load-carrying capacity are evaluated and the results are presented in terms of parametric curves. Important physical situations where these viscosity variations may be observed or produced are described.


Author(s):  
Xiandong Liao ◽  
Xiang Hu

The seismic performance of the internal connection of precast prestressed concrete frame was studied systematically, based on the experiment of full-scale model under low cyclic reversed loading. This study was mainly focused on failure pattern, load-carrying capacity, skeleton curves, and hysteresis curves. Furthermore, a nonlinear finite element analysis using Abaqus was carried out to study the characteristics of the internal connection of precast prestressed concrete frame. Results revealed that the damage was concentrated mainly on beam end owing to flexural action, while steel bars in the columns and stirrups in the core region remained elastic until failure occurred. The calculated value of the load-carrying capacity of the internal connection was similar to the experimental one. Present study can be referenced for the application of precast prestressed concrete frame in high seismic zones.


Author(s):  
Fredrik Sahlin ◽  
Sergei B. Glavatskih ◽  
Torbjo¨rn Almqvist ◽  
Roland Larsson

Results of a numerical study of the influence of micro-patterned surfaces in hydrodynamic lubrication of two parallel walls are reported. Two types of parameterized grooves with the same order of depth as the film thickness are used on one stationary wall. The other wall is smooth and is sliding with a specified tangential velocity. Isothermal incompressible two dimensional full film fluid flow mechanics is solved using a Computational Fluid Dynamics method. It is shown that, by introducing a micro-pattern on one of two parallel walls, a net pressure rise in the fluid domain is achieved. This produces a load carrying capacity on the walls which is mainly contributed by fluid inertia. The load carrying capacity increases with Reynolds number. The load carrying capacity is reported to increase with groove width and depth. However, at a certain depth a vortex appears in the groove and near this value the maximum load carrying capacity is achieved. It is shown that the friction force decreases with deeper and wider grooves. Among all geometries studied, optimum geometry shapes in terms of hydrodynamic performance are reported.


2018 ◽  
Vol 70 (8) ◽  
pp. 1388-1395 ◽  
Author(s):  
Shipra Aggarwal ◽  
R.K. Pandey

Purpose The purpose of this paper is to conceive a new surface texture incorporating a tiny shape among the micro-pockets (with circular, rectangular, trapezoidal and triangular cross-sections) and dimples (cylindrical, hemispherical and ellipsoidal) for exploring to enhance the maximum possible performance behaviors of sector shape pad thrust bearing. Design/methodology/approach Numerical simulation of hydrodynamically lubricated sector shape textured pad thrust bearing has been presented incorporating thermal and cavitation effects. The coupled solution of governing equations (Reynolds equation, film thickness expression, viscosity–temperature relation, energy equation and Laplace equation) has been achieved using finite difference method and Gauss–Seidel iterative scheme. Findings With new textured pads, higher load-carrying capacity and lower coefficient of friction are obtained in comparison to plain sector shape pad. Texture pattern comprising square cross-sectional pockets yields higher load-carrying capacity and lower coefficient of friction in comparison to other cross-sectional shapes (circular, trapezoidal and triangular) of pockets considered herein. Originality/value This study reports a new texture, which involves micro-pockets of square cross-sectional shapes to improve the performance behavior of sector shape pad thrust bearing. About 75 per cent increase in load carrying capacity and 42 per cent reduction in coefficient of friction have been achieved with pad having new texture in comparison to conventional pad.


Sign in / Sign up

Export Citation Format

Share Document