Experimental research on cage motion with different pocket shapes in angular contact ball bearing

Author(s):  
Dujuan Yuan ◽  
Ruixiang Wang ◽  
Shijin Chen ◽  
Xiaoyang Chen

The cage motion with different pocket shapes, such as spherical, square, and cylindrical, in an angular contact ball bearing under different operating conditions are studied experimentally. A test rig with two laser displacement sensors is used to obtain the displacements of the cage in five freedom degrees. The results reveal that these three type cage shapes have different trends of the centroid trajectory versus rotating speed or radial load. The whirling radius is equal to half of the pocket clearance for the spherical pocket, and half of the guiding clearance for both square and cylindrical pocket. The slip rates of all cages decrease with increasing radial load, and increase with rotating speed. Both inclination angel and slip rate of the spherical, cylindrical and square pocket decrease in turn.

2020 ◽  
pp. 33-39
Author(s):  
I.A. Zverev

The stiffness indices of high-speed spindle units on angular contact ball bearings at high rotational speeds are investigated. It is found, that the spindle rotational speed, radial load, bearing temperature, type and magnitude of the preload in the bearings significantly affect the stiffness of the spindle unit. Keywords: high-speed spindle unit, angular contact ball bearing, elastic-deformation model. [email protected]


Author(s):  
Ankur Ashtekar ◽  
Farshid Sadeghi

The objectives of this investigation were to design and construct a high speed turbocharger test rig (TTR) to measure dynamics of angular contact ball bearing rotor system, and to develop a coupled dynamic model for the ball bearing rotor system to corroborate the experimental and analytical results. In order to achieve the objectives of the experimental aspect of this study, a test rig was designed and developed to operate at speeds up to 70,000 rpm. The rotating components (i.e., turbine wheels) of the TTR were made to be dynamically similar to the actual turbocharger. Proximity sensors were used to record the turbine wheel displacements while accelerometers were used to monitor the rotor vibrations. The TTR was used to examine the dynamic response of the turbocharger under normal and extreme operating conditions. To achieve the objectives of analytical investigation, a discrete element ball bearing model was coupled through a set of interface points with a component mode synthesis rotor model to simulate the dynamics of the turbocharger test rig. Displacements of the rotor from the analytical model were corroborated with experimental results. The analytical and experimental results are in good agreement. The bearing rotor system model was used to examine the bearing component dynamics. Effects of preloading and imbalance were also found to have significant effects on turbocharger rotor and bearing dynamics.


2020 ◽  
Vol 72 (7) ◽  
pp. 845-850
Author(s):  
Yue Liu

Purpose The purpose of this paper is to clarify the relationship between fatigue life and kinematics of angular contact ball bearing. It proposes a new modeling method of spin to roll ratio based on raceway friction, which is more accurate than the traditional raceway control theory. Design/methodology/approach The uniform model of spin to roll ratio based on raceway friction in a wide speed range is proposed using quasi-statics method, which considers centrifugal force, gyroscopic moment, friction force of raceway and other influencing factors. The accuracy is considerably improved compared with the static model without increasing too much computation. Findings A uniform model for spin to roll ratio of angular contact ball bearing based on raceway friction is established, and quite different relationships between fatigue life and speed under two operating conditions are found. Research limitations/implications The conclusion of this paper is based on the bearing basic fatigue life calculation theory provided by ISO/TS 16281; however, the accuracy of theory needs to be further verified. Practical implications This paper provides guidance for applying angular contact ball bearing, especially at a high speed. Originality/value This paper reveals the changing trend of fatigue life of angular contact ball bearing with the speed under different loads. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2020-0030


Author(s):  
Wenwu Wu ◽  
Jun Hong ◽  
Xiaohu Li ◽  
Yang Li ◽  
Baotong Li

With the increasing demand of higher operating speed for bearing system, more challenges have been exposed on the maintaining of the bearing performance. Preloading is an effective method to handle these challenges. Traditionally, the preloading of bearing system has been applied by uniform approaches such as rigid preload and constant preload. However, this treatment may hardly deal with the optimization of preloading problem due to the non-uniformity of the bearing stiffness becomes more apparent under high-speed operating conditions. A novel and practical approach is therefore presented in this paper to incorporate the non-uniformity effect to improve the structural performance of bearing under actual operating conditions. Firstly, the critical relationship between the stiffness behaviour and the non-uniform preload is evaluated for bearing system. The stiffness problem of angular contact ball bearing system is then formulated analytically by Jones’ model. With this approach, boundary conditions are achieved to solve the local contact deformation and predict the bearing life under non-uniform preload. Finally, both the uniform preload and the non-uniform preload cases for bearing system are simulated under various operating conditions. Comparing with traditional methods, the proposed method can provide a better solution in both stiffness and life that will enable a designer to obtain a deep insight on the optimization of bearing system.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Wang Yunlong ◽  
Wang Wenzhong ◽  
Li Yulong ◽  
Zhao Ziqiang

Lubrication analysis of rolling bearing is often conducted with assumed operating conditions, which does not consider the effect of internal dynamics of rolling bearing. In this paper, the effects of the applied load and bearing rotational speed on the lubrication performance in an angular contact ball bearing are conducted, which combines the bearing dynamic analysis and thermo-elastohydrodynamic lubrication (TEHL) analysis. First, the internal motions and contact forces are obtained from the developed bearing dynamic model, and then were integrated into the TEHL model to investigate the lubrication performance of the bearing. The results show that the rotational speed and external load has significant effects on film thickness, temperature, and power loss; if the improper axial load is applied for certain bearing speed, the lubrication performance will deteriorate and thermal failure may occur; there exists critical load or speed to keep good lubrication performance and avoid thermal failure; the skidding contributes to the thermal failure and bad lubrication performance.


1986 ◽  
Vol 108 (3) ◽  
pp. 462-466 ◽  
Author(s):  
P. K. Gupta ◽  
J. F. Dill ◽  
J. W. Artuso ◽  
N. H. Forster

Motion of the cage in a high-speed angular contact ball bearing is experimentally investigated as a function of prescribed unbalance, up to operating speeds corresponding to three million DN. The predictions of cage motion made by the recently developed computer model, ADORE, are validated in the light of the experimental data. It is shown the cage whirl velocity is essentially equal to its angular velocity at all levels of unbalance and over a wide range of operating conditions. For the inner race guided turbine engine bearing, the cage/race interaction takes place directly opposite to the location of the unbalance and the severity of the interaction increases with the level of unbalance and the operating speed. ADORE predictions, over the entire range of unbalance and bearing operating conditions, are in very good agreement with the experimental observations.


Author(s):  
Baogang Wen ◽  
Hongjun Ren ◽  
Hao Zhang ◽  
Qingkai Han

The commonly known effects of both the rotating speeds and external loads on the bearing dynamics or life behaviors are mostly caused by its cage dynamics, because of the complicated contact and collision interactions between the cage and other parts such as the inner or outer rings and balls. In this paper, experimental investigation of dynamic motions of a cage is carried out under various rotating speeds and external loads in a ball bearing. On a bearing test rig, the cage motions in axial and radial directions are measured by use of eddy transducers installed inside the bearing house and the subpanel. Then the measured results are analyzed by fast Fourier transform and compared at different operating conditions including rotating speeds, axial and radial forces, or moments. The three-dimensional space motions of the cage are also constructed to illustrate its different modes. Results reveal that the cage motions are typically periodic in the three directions. The motion frequencies consist of the cage rotating frequency and its multi-frequency, the inner ring rotating frequency, and also some combination frequencies of the cage and inner ring. The obtained characteristic frequencies of the cage motion in axial are similar to that in radial, but different in the variety of amplitudes under the same operating conditions. The increment of rotating speeds and axial loads of the bearing gradually make the whirl trajectories of the cage mass center regular, and enlarge its whirl radii. Instead, the whirl trajectories change from well-defined patterns to complicated ones, and its whirl radii decrease on increasing the radial loads and moments of the bearing. All the obtained experimental results are useful references for dynamic design and life prediction of high-speed and low-load bearings commonly used in many machines.


2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Matthew D. Brouwer ◽  
Farshid Sadeghi ◽  
Craig Lancaster ◽  
Jamie Archer ◽  
James Donaldson

The objective of this experimental investigation was to design and develop a high speed turbocharger test rig (TTR) in order to critically examine the whirl and frictional characteristics of floating ring and ball bearing turbochargers. In order to achieve the objective, a high speed TTR was designed and developed with the capability of reaching speeds in excess of 100,000 rpm and was equipped with speed and displacement sensors to obtain the necessary results for comparison between the two turbocharger models. The TTR was used to compare and contrast the whirl and friction characteristics of two identical turbochargers differing only by the support structure of the rotor system: one containing a floating ring bearing turbocharger (FRBT) and the other a ball bearing turbocharger (BBT). The TTR is driven by an industrial compressor powered by a six cylinder 14 liter diesel engine. This configuration closely resembles turbocharger operation with an actual engine and was able to operate in both nominal and extreme operating conditions. A pair of displacement sensors was installed to measure the whirl of the rotor near the end of the compressor. Whirl results indicated that the BBT was significantly more rigid and stable than the FRBT. Waterfall plots were used to compare the frequency response of the two turbochargers over the full range of operating speeds. The majority of motion for the BBT was the whirl of the synchronous excitation due to a negligible inherent imbalance with some larger motions caused by vibrational modes. The whirl of the FRBT consists of not only the synchronous motion but also subsynchronous motions as a result of oil film instabilities throughout the entire operating range of speeds. The TTR was also used to compare frictional losses within the bearings. A study of the run-down times after the pressurized air supply was removed indicated that the BBT has significantly lower frictional losses under all operating conditions tested.


2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Eberhard Abele ◽  
Lars Holland ◽  
Alexander Nehrbass

Movement analyses of ball bearings with regard to stable and unstable cage motion behavior are often conducted by simulations, typically by investigating the cage whirl. Some experimental studies exist in which the cage is modified in order to capture its movement with sensors. This paper presents an image-based approach for investigating the cage motion without modifications, which in turn allows a cage motion analysis of an angular contact ball bearing under operation condition. Two new image evaluation algorithms are presented in detail and their suitability is verified by experiments on a bearing test rig.


Author(s):  
S. Srinidhi ◽  
Mayank Tiwari ◽  
Rajni Burra ◽  
Hombe Gowda ◽  
Paul A. Siemers

Passage of current through moving conductive contacts results in electrical discharge and then melting of the material, which leads to wear. Such kind of bearing wear is common in electrical machines. There are however certain patterns which are unique to this kind wear. This wear pattern is called ‘fluting’, which are repetitive in nature. Electrical discharge can create higher surface roughness. Also the thermal and rheological properties of the lubricant play a big role in the film thickness formation. The passage of current through the lubricant also changes this and is determined by the electrical properties of the lubricant. In this work effect of bearing currents on a 7204 angular contact ball bearing is studied. This is tested with and without different cage materials with an axial load and no radial load, rotating at 2700 rpm. Four experiments were done at different-level of voltage, lube and cage material. Type of lubricant was seen to play a significant role in fluting.


Sign in / Sign up

Export Citation Format

Share Document