scholarly journals A comprehensive assessment of cerebellar damage in multiple sclerosis using diffusion tractography and volumetric analysis

2011 ◽  
Vol 17 (9) ◽  
pp. 1079-1087 ◽  
Author(s):  
VM Anderson ◽  
CAM Wheeler-Kingshott ◽  
K Abdel-Aziz ◽  
DH Miller ◽  
A Toosy ◽  
...  

Background: White matter (WM) and grey matter (GM) brain damage in multiple sclerosis (MS) is widespread, but the extent of cerebellar involvement and impact on disability needs to be clarified. Objective: This study aimed to assess cerebellar WM and GM atrophy and the degree of fibre coherence in the main cerebellar connections, and their contribution to disability in relapsing–remitting MS (RRMS) and primary progressive MS (PPMS). Methods: Fourteen patients with RRMS, 12 patients with PPMS and 16 healthy controls were recruited. Cerebellar WM and GM volumes and tractography-derived measures from the middle and superior cerebellar peduncles, including fractional anisotropy (FA), mean diffusivity (MD), and directional diffusivities, were quantified from magnetic resonance imaging (MRI). Patients were assessed on clinical scores, including the MS Functional Composite score subtests. Linear regression models were used to compare imaging measures between 12 RRMS, 11 PPMS and 16 controls, and investigate their association with clinical scores. Results: Patients with PPMS showed reduced FA and increased radial diffusivity in the middle cerebellar peduncle compared with controls and patients with RRMS. In PPMS, lower cerebellar WM volume was associated with worse performance on the upper limb test. In the same patient group, we found significant relationships between superior cerebellar peduncle FA and upper limb function, and between superior cerebellar peduncle FA, MD and radial diffusivity and speed of walking. Conclusion: These findings indicate reduced fibre coherence in the main cerebellar connections, and link damage in the whole cerebellar WM, and, in particular, in the superior cerebellar peduncle, to motor deficit in PPMS.

Neurology ◽  
2018 ◽  
Vol 92 (1) ◽  
pp. e30-e39 ◽  
Author(s):  
Meher R. Juttukonda ◽  
Giulia Franco ◽  
Dario J. Englot ◽  
Ya-Chen Lin ◽  
Kalen J. Petersen ◽  
...  

ObjectiveTo assess white matter integrity in patients with essential tremor (ET) and Parkinson disease (PD) with moderate to severe motor impairment.MethodsSedated participants with ET (n = 57) or PD (n = 99) underwent diffusion tensor imaging (DTI) and fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity values were computed. White matter tracts were defined using 3 well-described atlases. To determine candidate white matter regions that differ between ET and PD groups, a bootstrapping analysis was applied using the least absolute shrinkage and selection operator. Linear regression was applied to assess magnitude and direction of differences in DTI metrics between ET and PD populations in the candidate regions.ResultsFractional anisotropy values that differentiate ET from PD localize primarily to thalamic and visual-related pathways, while diffusivity differences localized to the cerebellar peduncles. Patients with ET exhibited lower fractional anisotropy values than patients with PD in the lateral geniculate body (p < 0.01), sagittal stratum (p = 0.01), forceps major (p = 0.02), pontine crossing tract (p = 0.03), and retrolenticular internal capsule (p = 0.04). Patients with ET exhibited greater radial diffusivity values than patients with PD in the superior cerebellar peduncle (p < 0.01), middle cerebellar peduncle (p = 0.05), and inferior cerebellar peduncle (p = 0.05).ConclusionsRegionally, distinctive white matter microstructural values in patients with ET localize to the cerebellar peduncles and thalamo-cortical visual pathways. These findings complement recent functional imaging studies in ET but also extend our understanding of putative physiologic features that account for distinctions between ET and PD.


2021 ◽  
pp. 135245852110331
Author(s):  
Olga Marchesi ◽  
Raffaello Bonacchi ◽  
Paola Valsasina ◽  
Paolo Preziosa ◽  
Elisabetta Pagani ◽  
...  

Background: Executive dysfunctions, including difficulties in attention, working memory, planning, and inhibition affect 15%–28% of multiple sclerosis (MS) patients. Objectives: To investigate structural and functional magnetic resonance imaging (MRI) abnormalities underlying executive function (EF) in MS patients. Methods: A total 116 MS patients and 65 controls underwent resting-state (RS) and diffusion-weighted sequences and neuropsychological examination, including Wisconsin Card Sorting Test (WCST) to test EF. Brain RS cognitive networks and fractional anisotropy (FA) from a priori selected white matter tracts were derived. Associations of WCST scores with RS functional connectivity (FC) and FA abnormalities were investigated. Results: In MS patients, predictors of working memory/updating were: lower corpus callosum (CC) FA, lower left working-memory network (WMN), right WMN RS FC for worse performance; lower executive control network (ECN), higher default-mode network (DMN), and salience network (SN) RS FC for better performance ( R2 = 0.35). Predictors of attention were lower CC genu FA, lower left WMN, and DMN RS FC for worse performance; higher left WMN and ECN RS FC for better performance ( R2 = 0.24). Predictors of worse shifting/inhibition were lower CC genu and superior cerebellar peduncle (SCP) FA, lower left WMN RS FC for worse performance; and higher ECN RS FC for better performance ( R2 = 0.24). Conclusions: CC and SCP microstructural damage and RS FC abnormalities in cognitive networks underlie EF frailty in MS.


2017 ◽  
Vol 127 (5) ◽  
pp. 788-799 ◽  
Author(s):  
Robert I. Block ◽  
Vincent A. Magnotta ◽  
Emine O. Bayman ◽  
James Y. Choi ◽  
Joss J. Thomas ◽  
...  

AbstractBackgroundAnesthetics have neurotoxic effects in neonatal animals. Relevant human evidence is limited. We sought such evidence in a structural neuroimaging study.MethodsTwo groups of children underwent structural magnetic resonance imaging: patients who, during infancy, had one of four operations commonly performed in otherwise healthy children and comparable, nonexposed control subjects. Total and regional brain tissue composition and volume, as well as regional indicators of white matter integrity (fractional anisotropy and mean diffusivity), were analyzed.ResultsAnalyses included 17 patients, without potential confounding central nervous system problems or risk factors, who had general anesthesia and surgery during infancy and 17 control subjects (age ranges, 12.3 to 15.2 yr and 12.6 to 15.1 yr, respectively). Whole brain white matter volume, as a percentage of total intracranial volume, was lower for the exposed than the nonexposed group, 37.3 ± 0.4% and 38.9 ± 0.4% (least squares mean ± SE), respectively, a difference of 1.5 percentage points (95% CI, 0.3 to 2.8; P = 0.016). Corresponding decreases were statistically significant for parietal and occipital lobes, infratentorium, and brainstem separately. White matter integrity was lower for the exposed than the nonexposed group in superior cerebellar peduncle, cerebral peduncle, external capsule, cingulum (cingulate gyrus), and fornix (cres) and/or stria terminalis. The groups did not differ in total intracranial, gray matter, and cerebrospinal fluid volumes.ConclusionsChildren who had anesthesia and surgery during infancy showed broadly distributed, decreased white matter integrity and volume. Although the findings may be related to anesthesia and surgery during infancy, other explanations are possible.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Carolina de Medeiros Rimkus ◽  
Thiago de Faria Junqueira ◽  
Katarina Paz Lyra ◽  
Marcel P. Jackowski ◽  
Melissa A. R. Machado ◽  
...  

The corpus callosum is the largest fiber bundle in the central nervous system and it takes part in several cognitive pathways. It can be affected by multiple sclerosis (MS) early in the disease. DTI is capable of infering the microstructural organization of the white matter. The vectorial analysis of the DTI offers the more specific indices of axial diffusivity (AD) and radial diffusivity (RD), which have shown to be useful to discriminate myelin damage from axon loss, respectively. This study presents DTI results (mean diffusivity (MD), fractional anisotropy (FA), RD, and AD) of 23 relapsing-remitting MS patients and its correlation with cognitive performance. There were 47.8% of cognitive impaired patients (MS CI). We found signs of demyelination, reflected by increased RD, and incipient axon loss, reflected by AD increase, which was slightly higher in the MS CI. The cognitive changes correlated with the DTI parameters, suggesting that loss of complexity in CC connections can impair neural conduction. Thus, cognitive impairment can be related to callosal disconnection, and DTI can be a promising tool to evaluate those changes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Thien Huong Nguyen ◽  
Alexis Vaussy ◽  
Violette Le Gaudu ◽  
Jennifer Aboab ◽  
Sophie Espinoza ◽  
...  

Abstract Objective To evaluate the 3D Fast Gray Acquisition T1 Inversion Recovery (FGATIR) sequence for MRI identification of brainstem tracts and nuclei damage in multiple sclerosis (MS) patients. Methods From april to december 2020, 10 healthy volunteers and 50 patients with remitted-relapsing MS (58% female, mean age 36) underwent MR imaging in the Neuro-imaging department of the C.H.N.O. des Quinze-Vingts, Paris, France. MRI was achieved on a 3 T system (MAGNETOM Skyra) using a 64-channel coil. 3D FGATIR sequence was first performed on healthy volunteers to classify macroscopically identifiable brainstem structures. Then, FGATIR was assessed in MS patients to locate brainstem lesions detected with Proton Density/T2w (PD/T2w) sequence. Results In healthy volunteers, FGATIR allowed a precise visualization of tracts and nuclei according to their myelin density. Including FGATIR in MR follow-up of MS patients helped to identify structures frequently involved in the inflammatory process. Most damaged tracts were the superior cerebellar peduncle and the transverse fibers of the pons. Most frequently affected nuclei were the vestibular nuclei, the trigeminal tract, the facial nerve and the solitary tract. Conclusion Combination of FGATIR and PD/T2w sequences opened prospects to define MS elective injury in brainstem tracts and nuclei, with particular lesion features suggesting variations of the inflammatory process within brainstem structures. In a further study, hypersignal quantification and microstructure information should be evaluated using relaxometry and diffusion tractography. Technical improvements would bring novel parameters to train an artificial neural network for accurate automated labeling of MS lesions within the brainstem.


2016 ◽  
Vol 23 (9) ◽  
pp. 1194-1203 ◽  
Author(s):  
Alessandro D’Ambrosio ◽  
Elisabetta Pagani ◽  
Gianna C Riccitelli ◽  
Bruno Colombo ◽  
Mariaemma Rodegher ◽  
...  

Objective: To investigate the role of cerebellar sub-regions on motor and cognitive performance in multiple sclerosis (MS) patients. Methods: Whole and sub-regional cerebellar volumes, brain volumes, T2 hyperintense lesion volumes (LV), and motor performance scores were obtained from 95 relapse-onset MS patients and 32 healthy controls (HC). MS patients also underwent an evaluation of working memory and processing speed functions. Cerebellar anterior and posterior lobes were segmented using the Spatially Unbiased Infratentorial Toolbox (SUIT) from Statistical Parametric Mapping (SPM12). Multivariate linear regression models assessed the relationship between magnetic resonance imaging (MRI) measures and motor/cognitive scores. Results: Compared to HC, only secondary progressive multiple sclerosis (SPMS) patients had lower cerebellar volumes (total and posterior cerebellum). In MS patients, lower anterior cerebellar volume and brain T2 LV predicted worse motor performance, whereas lower posterior cerebellar volume and brain T2 LV predicted poor cognitive performance. Global measures of brain volume and infratentorial T2 LV were not selected by the final multivariate models. Conclusion: Cerebellar volumetric abnormalities are likely to play an important contribution to explain motor and cognitive performance in MS patients. Consistently with functional mapping studies, cerebellar posterior–inferior volume accounted for variance in cognitive measures, whereas anterior cerebellar volume accounted for variance in motor performance, supporting the assessment of cerebellar damage at sub-regional level.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Min Jye Cho ◽  
Sung Ho Jang

AbstractThis study used tract-based spatial statistics to examine the relationship between post-traumatic amnesia (PTA) and white matter integrity in patients with a traumatic brain injury (TBI). Forty-seven patients with TBI in the chronic stage and 47 age- and sex-matched normal control subjects were recruited to the study. Correlation coefficients were calculated to observe the relationships among the PTA duration, white matter fractional anisotropy (FA) values, and mini-mental state examination (MMSE) results in the patient group. Both before and after Benjamini–Hochberg (BH) corrections, FA values of 46 of the 48 regions of interests of the patient group were lower than those of the control group. The FA values of column and body of fornix, left crus of fornix, left uncinate fasciculus, right hippocampus part of cingulum, left medial lemniscus, right superior cerebellar peduncle, left superior cerebellar peduncle, and left posterior thalamic radiation (after BH correction: the uncinate fasciculus and right hippocampus part of cingulum) in the patient group were negatively correlated with PTA duration. PTA duration was related to the injury severity of eight neural structures, each of which is involved in the cognitive functioning of patients with TBI. Therefore, PTA duration can indicate injury severity of the above neural structures in TBI patients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shuang Ding ◽  
Yu Guo ◽  
Xiaoya Chen ◽  
Silin Du ◽  
Yongliang Han ◽  
...  

AbstractThe aim of this study was to investigate the mechanisms underlying demyelination and remyelination with 7.0 T multiparameter magnetic resonance imaging (MRI) in an alternative cuprizone (CPZ) mouse model of multiple sclerosis (MS). Sixty mice were divided into six groups (n = 10, each), and these groups were imaged with 7.0 T multiparameter MRI and treated with an alternative CPZ administration schedule. T2-weighted imaging (T2WI), susceptibility-weighted imaging (SWI), and diffusion tensor imaging (DTI) were used to compare the splenium of the corpus callosum (sCC) among the groups. Prussian blue and Luxol fast blue staining were performed to assess pathology. The correlations of the mean grayscale value (mGSV) of the pathology results and the MRI metrics were analyzed to evaluate the multiparameter MRI results. One-way ANOVA and post hoc comparison showed that the normalized T2WI (T2-nor), fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) values were significantly different among the six groups, while the mean phase (Φ) value of SWI was not significantly different among the groups. Correlation analysis showed that the correlation between the T2-nor and mGSV was higher than that among the other values. The correlations among the FA, RD, MD, and mGSV remained instructive. In conclusion, ultrahigh-field multiparameter MRI can reflect the pathological changes associated with and the underlying mechanisms of demyelination and remyelination in MS after the successful establishment of an acute CPZ-induced model.


Sign in / Sign up

Export Citation Format

Share Document