An analytical method for full-range mechanical behavior of continuous slab-deck in multi-span simply supported concrete bridges

2021 ◽  
pp. 136943322110427
Author(s):  
Xiang Zhang ◽  
Quan-Sheng Yan ◽  
Bu-Yu Jia ◽  
Zheng Yang ◽  
Ying-Hao Zhao ◽  
...  

Connecting the ends of girders with a continuous slab-deck to make a multiple-span simply supported girder bridge provides many benefits, but there is no suitable nonlinear analysis model which considers continuous slab-deck cracking under tension and bending. In this article, the rotational spring model is further refined to replace the restraining effects at both ends of the girder by the simplified mechanical model associated with axial stiffness, bending stiffness, and shear stiffness. Then, it is introduced into the analysis of continuous slab-deck. The more accurate rotations and displacements of both ends of continuous slab-deck are obtained to investigate the more precise moment and tension of the continuous slab-deck. Furthermore, this article presents an improved nonlinear analysis model of continuous slab-deck based on a detailed boundary rotational spring model. The displacements of important positions and the strain of key components in continuous slab-deck after cracking are investigated by numerical analysis and full-scale model test to verify the accuracy of the proposed nonlinear analysis model. The result shows that the nonlinear analysis model presented in this article could successfully evaluate the depth of cracks and the stress of rebars in continuous slab-deck, and it is instructional in predicting the cracking state of the continuous slab-deck and the reinforcement design.

Author(s):  
K.T. Moorhead ◽  
P. Kolh ◽  
S. Paeme ◽  
J.G. Chase ◽  
C.E. Hann ◽  
...  

Structures ◽  
2022 ◽  
Vol 35 ◽  
pp. 303-313
Author(s):  
Mohamed Tahiri ◽  
Abdellatif Khamlichi ◽  
Mohammed Bezzazi

Author(s):  
Jeffrey L. Streator ◽  
Robert L. Jackson

Small-scale devices are particularly vulnerable to adverse effects of adhesion because of large surface-area-to-volume ratios. Additionally, small gaps can be easily bridged at high humidity or when there are other contaminant liquids present. The bridging of a portion of the interface by a liquid droplet of given volume, tends to pull surfaces in closer proximity due to the sub-ambient pressures that arise. In turn, regions spanned by the bridge will increase in size and lead to a greater adhesive force. In the present work we develop a model for these effects in the presence of surface roughness. The influence of asperities on the surface is treated by means of a recently-developed multi-scale model that considers the full range of wavelengths comprising the surface profile. In the simulations, two nominally flat rough surfaces with profiles that vary only in one direction are brought together under a prescribed load. A liquid bridge of given volume (per unit depth) is then introduced into the contact, assuming an initial areal coverage. The interface configuration is then iterated until one is found that satisfies the equations of elasticity and capillarity for a given liquid volume. As a result of the simulation, critical values are found for combinations of parameters that delineate stable and unstable conditions.


2007 ◽  
Vol 353-358 ◽  
pp. 2676-2680
Author(s):  
Xiu Shan Sun ◽  
Ying Hua Liu ◽  
Zhang Zhi Cen ◽  
Dong Ping Fang

In this paper, full-scale reinforced concrete slabs are analyzed under thermal-mechanical loads in fire conditions. The rectangular one-way slabs including a simply supported slab and a three-span continuous slab are concerned in the analysis. Finite element simulation is carried out by using the ABAQUS program to evaluate the non-uniform temperature distributions in thickness of the slabs and to analyze the deformation and stress redistribution of the slabs at elevated temperatures. Sequentially coupled thermal and structural analyses are performed to simulate the responses of the slabs in fire conditions. Deformation and strength of the slabs under thermal and mechanical loads are discussed. The numerical results are compared with the experimental ones and good agreements are observed. The analysis results show that the main reinforcement ratio has significant effects on the deformation and strength of the slabs at elevated temperatures and the three-span continuous slab has better performance of fire-resistance than the simply supported slab.


Author(s):  
Fan Zhang ◽  
Yong-Yi Wang

The propagation of seismic waves introduces strains in buried pipelines. Considerable amount of work was performed in 1970’s and early 1980’s in this subject area. A good representative of such work is the model developed by Shinozuka and Koike in 1979. The analytical models developed during this period are still the major tools in assessing the influence of seismic waves on buried pipelines. The foundations of these models are the assumptions and some simplified soil and pipe interaction models available at the time. In 1984 a spring model representing the interaction between soil and buried pipes was introduced by American Society of Civil Engineers (ASCE) in Guidelines for the Seismic Design of Oil and Gas Pipeline Systems. An improved version of the ASCE model was later published in Guidelines for the Design of Buried Steel Pipe by American Lifelines Alliance in 2001. Since then, the spring model has become one of the most widely used models by various industries and has been incorporated into commercial software, such as AutoPIPE®. Most of the soil properties in fields are represented by the parameters of the ASCE soil-spring model. However, it is inconvenient to assess the influence of seismic waves on pipelines with soil properties described by parameters of the ASCE model. There are differences between the ASCE soil-spring model and the soil-pipe interactions in the seismic wave analysis model. In this paper the foundation of Shinozuka and Koike model is first reviewed. The model is then revised to accommodate the ASCE soil-spring model. Some unnecessary assumptions in the Shinozuka and Koike model are removed to make the model more generally applicable to various field conditions. Finally, the revised model is verified by finite element analysis under several typical pipeline field conditions, including straight segments and segments with bends and tees.


Author(s):  
Trevor Kelly

Although shear walls are a widely used system for providing lateral load resistance, nonlinear analysis procedures for this type of element are much less well developed than those for frame and truss elements. Equivalent flexural models do not include shear deformation and are only suited for symmetric, straight walls. This paper describes the development of an analysis model which includes nonlinear effects for both shear and flexure. The formulation is based on a "macro" modelling approach which is suitable for complete building models in a design office environment. An analysis methodology is developed using engineering mechanics and experimental results and implemented in an existing nonlinear analysis computer program. A model is developed and validated against test results of solid walls and walls with openings. This shows that the model can capture the general characteristics of hysteretic response and the maximum strength of the wall. Results can be evaluated using acceptance criteria derived from published guidelines. An example shear wall building is then evaluated using both the nonlinear static and the nonlinear dynamic procedures. The procedure is shown to be a practical method for implementing performance based design procedures for shear wall buildings.


Sign in / Sign up

Export Citation Format

Share Document