A review on the behaviour of reinforced concrete beams with fibre-reinforced polymer-strengthened web openings

2021 ◽  
pp. 136943322110463
Author(s):  
Xuefei Nie ◽  
Shishun Zhang ◽  
Zeyu Gao ◽  
Zhuo Zeng

Web openings often need to be created in reinforced concrete (RC) beams for the passages of utility ducts and/or pipes. Such web openings reduce the cross-section area of the beam in the affected region, leading to decrease in its load-carrying capacity and stiffness. Therefore, a fibre-reinforced polymer (FRP)-strengthening system generally needs to be applied around the web opening to ensure the safety of the weakened beam. A number of studies have been conducted by researchers all over the world to examine the behaviour of RC beams with FRP-strengthened web opening/web openings, and plenty of useful findings have been generated. This article presents a critical literature review of existing relevant research from three aspects: experimental studies, numerical studies and theoretical studies. The effect of main factors, including the size, shape, location and number of the web opening, the shape and shear span ratio of the beam, the concrete strength, the loading scheme and the FRP-strengthening scheme, on the structural performance of RC beams with FRP-strengthened web opening/web openings have been thoroughly analysed and discussed. Finally, directions for future research based on the gaps which exist in existing studies are pointed out.

2021 ◽  
pp. 136943322110015
Author(s):  
Akram S. Mahmoud ◽  
Ziadoon M. Ali

When glass fibre-reinforced polymer (GFRP) bar splices are used in reinforced concrete sections, they affect the structural performance in two different ways: through the stress concentration in the section, and through the configuration of the GFRP–concrete bond. This study experimentally investigated a new method for increasing the bond strength of a GFRP lap (two GFRP bars connected together) using a carbon fibre-reinforced polymer (CFRP) sheet coated in epoxy resin. A new splicing method was investigated to quantify the effect of the bar surface bond on the development length, with reinforced concrete beams cast with laps in the concrete reinforcing bars at a known bending span length. Specimens were tested in four-point flexure tests to assess the strength capacity and failure mode. The results were summarised and compared within a standard lap made according to the ACI 318 specifications. The new method for splicing was more efficient for GFRP splice laps than the standard lap method. It could also be used for head-to-head reinforcement bar splices with the appropriate CFRP lapping sheets.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Tara Sen ◽  
H. N. Jagannatha Reddy

The development of commercially viable composites based on natural resources for a wide range of applications is on the rise. Efforts include new methods of production and the utilization of natural reinforcements to make biodegradable composites with lignocellulosic fibers, for various engineering applications. In this work, thermal conditioning of woven sisal fibre was carried out, followed by the development of woven sisal fibre reinforced polymer composite system, and its tensile and flexural behaviour was characterized. It was observed that thermal conditioning improved the tensile strength and the flexural strength of the woven sisal fibre composites, which were observed to bear superior values than those in the untreated ones. Then, the efficacy of woven sisal fibre reinforced polymer composite for shear strengthening of reinforced concrete beams was evaluated using two types of techniques: full and strip wrapping techniques. Detailed analysis of the load deflection behaviour and fracture study of reinforced concrete beams strengthened with woven sisal under shearing load were carried out, and it was concluded that woven sisal FRP strengthened beams, underwent very ductile nature of failure, without any delamination or debonding of sisal FRP, and also increased the shear strength and the first crack load of the reinforced concrete beams.


2013 ◽  
Vol 671-674 ◽  
pp. 474-478 ◽  
Author(s):  
Kai Xiang ◽  
Guo Hui Wang ◽  
Bi Zhao

Shear strength and stiffness of fire-damaged reinforced concrete (RC) beams were researched. The nonlinear finite element method (FEM) was developed to simulate shear strength of fire-damaged RC beams. Considering mechanical properties deterioration of concrete and steel reinforcing bar, the parameters of fire-damaged RC beams, including fire exposure time, shear span to depth ratios, concrete strength, diameters of stirrups and spacing of stirrups, were analyzed. Based on numerical analysis, the change of shear strength and stiffness of fire-damaged RC beams were identified. The results showed that shear strength and stiffness of fire-damaged RC beams changed under different parameters. With increase of fire exposure time or increase of shear span to depth ratio or decrease of concrete strength, shear strength and stiffness of fire-damaged RC beams descended obviously. With decrease of diameters of stirrups or increase of spacing of stirrups, shear strength of fire-damaged RC beams descended gradually, but stiffness of fire-damaged RC beams had little change.


Sign in / Sign up

Export Citation Format

Share Document