scholarly journals Statistical damage identification method based on dynamic response sensitivity

2018 ◽  
Vol 39 (3) ◽  
pp. 560-571 ◽  
Author(s):  
Ling Mao ◽  
Shun Weng ◽  
Shu-Jin Li ◽  
Hong-Ping Zhu ◽  
Yan-Hua Sun

The traditional deterministic damage detection method is based on the assumption that the measured data and the finite element model are accurate. However, in real situation, there are many uncertainties in the damage identification procedure such as the errors of the finite element model and the measurement noise. Since the uncertainties inevitably exist in the finite element models and measured data, the statistic method which considers the uncertainty has wide practical application. This paper proposes a statistical damage identification method based on dynamic response sensitivity in state-space domain. Considering the noise of the finite element model and measured acceleration response, the statistical variations of the damaged finite element model are derived with perturbation method which is based on a Taylor series expansion of the response vector and verified by Monte Carlo technique. Afterward, the probability of damage existence for each structural element is estimated using the statistical characteristic of the identified structural parameters. A numerical simply supported beam under the moving load is applied to demonstrate the accuracy and efficiency of the proposed statistical method.

Abstract. As a modern high-tech rail vehicle, the maglev train realizes the non-contact suspension and guidance between the train and the guideway, which greatly reduces the resistance of the system. Due to the high-speed operation characteristics of maglev trains, the structural health monitoring of guideway girders is particularly important for the safety and stability of maglev train operation. This paper takes the maglev train guideway girder as the monitoring target, and the finite element model of the maglev vehicle-guideway is established to simulate the running state of the train passing through the guideway girder. The dynamic response data of the guideway girder is obtained in the finite element model, considering healthy states and different damage states of the guideway girder. Then, a modal-based damage identification method is proposed, which obtains the guideway girder damage sensitive characteristics by decomposing the guideway girder acceleration response signal. Finally, based on the measured guideway girder acceleration data, this paper verifies the effectiveness of the damage identification method in guideway girder structure health monitoring, which provides reference and guidance for the future maintenance of the maglev guideway girder.


2020 ◽  
pp. 107754632093374
Author(s):  
Mehdi Fathalizadeh Najib ◽  
Ali Salehzadeh Nobari

Super-harmonic components in response to the harmonic excitation are sensitive indicators of damages such as breathing cracks in beams or kissing bonds in adhesive joints. In a model-based damage identification process using pattern recognition, these damage indicators can be extracted from the finite element model for all probable damage cases using stepped-sine simulation that necessitates nonlinear transient dynamic analysis with high computational costs. In this study, a procedure based on nonlinear autoregressive with exogenous input model is introduced as an alternative shortcut method for extraction of the damage indicators. As a case study, the finite element model of a beam connected to a rigid support via a flexible adhesive layer was used to investigate the efficiency of the proposed method. Kissing bond was introduced to the model as the source of nonlinearity via contact elements. The results prove that the super-harmonic components of orders up to 3, extracted from the nonlinear autoregressive with exogenous input model, agreed well with those extracted directly from the finite element model, whereas the computational time is reduced by a factor of 1/5. Consequently, the proposed method is very advantageous in the stage of damage pattern database creation in a real-world model-based damage identification process based on pattern recognition.


2011 ◽  
Vol 221 ◽  
pp. 472-477
Author(s):  
Zhi Min Fan ◽  
Guang Ting Zhou ◽  
Jian Ping Liu

The finite element model of the stirring kneader shaft was built by PRO/E software, which was inserted into ANSYS. Next, the instantaneous dynamic analysis of the new stirring kneader shaft was carried out. The instantaneous dynamic response of stirring shaft about the exciting force of fluid was obtained, which was to optimize the structural parameters of the stirring shaft. The foundation for the next fatigue analysis was laid based on the instantaneous dynamic response; the fatigue life of stirring kneader shaft can be predicted.


2013 ◽  
Vol 330 ◽  
pp. 872-877
Author(s):  
Yi Qiang Xiang ◽  
Li Si Liu ◽  
Shao Jun Li

Based on the results of experiment, this paper discusses about the updating and validation of accurate finite element model for damage identification of the steel-concrete composite box girder bridge. Taking a 5 meters long steel-concrete composite box girder bridge as the research object and the finite element model is established. By means of scale model test the updating of the accurate finite element model has been completed and validation is confirmed.


2000 ◽  
Vol 37 (03) ◽  
pp. 117-128
Author(s):  
T. V. S. R. Appa Rao ◽  
Nagesh R. Iyer ◽  
J. Rajasankar ◽  
G. S. Palani

Finite-element modeling and use of appropriate analytical techniques play a significant role in producing a reliable and economic design for ship hull structures subjected to dynamic loading. The paper presents investigations carried out for the dynamic response analysis of ship hull structures using the finite-element method. A simple and efficient interactive graphical preprocessing technique based on the "keynode" concept and assembly-line procedure is used to develop the finite-element model of the hull structure. The technique makes use of the body plan of a ship hull to build the finite-element model through an interactive session. Stiffened plate/shell finite elements suitable to model the hull structure are formulated and used to model the structure. The finite elements take into account arbitrary placement of stiffeners in an element without increasing the number of degrees-of-freedom of the element. A three-dimensional finite-element model and a procedure based on the Bubnov-Galerkin residual approach are employed to evaluate the effects of interaction between the ship hull and water. Mode superposition technique is used to conduct the dynamic response analysis. The efficiency of the finite elements and the procedures is demonstrated through dynamic analysis of a submerged cantilever plate and a barge when both are subjected to sinusoidal forces. The dynamic responses exhibit expected behavior of the structure and a comparison with the results available in the literature indicate superior performance of the finite element and methodologies developed. Thus, the finite-element models and the procedures are found to be efficient and hence suitable for the dynamic analysis of similar structures.


2014 ◽  
Vol 1065-1069 ◽  
pp. 2090-2094
Author(s):  
Bin Jia ◽  
Xiao Wei Zhu ◽  
Zhu Wen ◽  
Qi Jiang

The finite element model was established in this paper to study the process of dynamic response of RC frame structure under internal explosive loading. The burst point in the model was located in the center of the frame structure .The article analyzed the process of the dynamic response of the frame structure in the explosive environment and the result of the numerical simulation accorded well with the test. The result showed that the finite element model was feasible as well as providesed reference to the design and protection for the building structure.


Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 393
Author(s):  
Yunfeng Zou ◽  
Xuandong Lu ◽  
Jinsong Yang ◽  
Tiantian Wang ◽  
Xuhui He

Structural damage identification technology is of great significance to improve the reliability and safety of civil structures and has attracted much attention in the study of structural health monitoring. In this paper, a novel structural damage identification method based on transmissibility in the time domain is proposed. The method takes the discrepancy of transmissibility of structure response in the time domain before and after damage as the basis of finite element model updating. The damage is located and quantified through iteration by minimizing the difference between the measurements at gauge locations and the reconstruction response extrapolated by the finite element model. Taking advantage of the response reconstruction method based on empirical mode decomposition, damage information can be obtained in the absence of prior knowledge on excitation. Moreover, this method directly collects time-domain data for identification without modal identification and frequent time–frequency conversion, which can greatly improve efficiency on the premise of ensuring accuracy. A numerical example is used to demonstrate the overall damage identification method, and the study of measurement noise shows that the method has strong robustness. Finally, the present work investigates the method through a simply supported overhanging beam. The experiments collect the vibration strain signals of the beam via resistance strain gauges. The comparison between identification results and theoretical values shows the effectiveness and accuracy of the method.


Author(s):  
Amarendra P. Atre

Thermal microactuators, devices that use the principle of thermal expansion to amplify motion, have several advantages in comparison with other actuators used to motivate surface micromachined components such as rotary microengines. They provide higher output forces and have simple geometries. Accurate steady-state and transient modeling of such thermal actuators provides a tool for design optimization to obtain better actuator performance. This paper describes the development, modeling issues and results of a three dimensional multiphysics non-linear finite element model of a surface micromachined thermal actuator. The simulation results are compared with experimentally measured data. Reasonable agreement is observed for static actuator deflection response. The measured transient response is observed to be significantly slower than that predicted by the finite element model.


Sign in / Sign up

Export Citation Format

Share Document