scholarly journals Application of a flat variational modal decomposition algorithm in fault diagnosis of rolling bearings

2019 ◽  
Vol 39 (2) ◽  
pp. 335-351
Author(s):  
Haodong Li ◽  
Ying Xu ◽  
Dong An ◽  
Lixiu Zhang ◽  
Songhua Li ◽  
...  

Fault diagnosis of rolling bearings can effectively prevent sudden accidents and is an important factor for the safe operation of mechanical systems. However, traditional time–frequency analysis techniques cannot effectively obtain the fault feature information. In this paper, a flat variational modal decomposition denoising method based on wavelet transform and variational modal decomposition is proposed to solve susceptibility of vibration signal to noise interference and easily obtain fault features. In this method, first, a series of mother wavelets with different periods are designed based on tone-burst signals, in the decomposition process of variational modal decomposition. This method is based on the designed mother wavelet along with wavelet correlation coefficient for the elimination of the components that are superfluous and frequent from each intrinsic mode function. Then, the regression coefficients of the denoise components and the original signal are calculated, and we select the corresponding components with higher regression coefficients to reconstruct the signal. The reconstructed signal is taken as the new original signal to be decomposed again by variational modal decomposition, and the relevant components are analyzed by enveloping the spectrum, so as to effectively remove noise interference and ensure accurate acquisition of fault feature frequency. We apply this method to the rolling bearing fault data and a comparative study is made with variational modal decomposition and empirical mode decomposition algorithms. The results show that the signal-to-noise ratio of the signal is improved by 77% and 44% after being processed by the flat variational modal decomposition method, compared to the empirical mode decomposition and the variational modal decomposition methods.

Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1248
Author(s):  
Rafia Nishat Toma ◽  
Cheol-Hong Kim ◽  
Jong-Myon Kim

Condition monitoring is used to track the unavoidable phases of rolling element bearings in an induction motor (IM) to ensure reliable operation in domestic and industrial machinery. The convolutional neural network (CNN) has been used as an effective tool to recognize and classify multiple rolling bearing faults in recent times. Due to the nonlinear and nonstationary nature of vibration signals, it is quite difficult to achieve high classification accuracy when directly using the original signal as the input of a convolution neural network. To evaluate the fault characteristics, ensemble empirical mode decomposition (EEMD) is implemented to decompose the signal into multiple intrinsic mode functions (IMFs) in this work. Then, based on the kurtosis value, insignificant IMFs are filtered out and the original signal is reconstructed with the rest of the IMFs so that the reconstructed signal contains the fault characteristics. After that, the 1-D reconstructed vibration signal is converted into a 2-D image using a continuous wavelet transform with information from the damage frequency band. This also transfers the signal into a time-frequency domain and reduces the nonstationary effects of the vibration signal. Finally, the generated images of various fault conditions, which possess a discriminative pattern relative to the types of faults, are used to train an appropriate CNN model. Additionally, with the reconstructed signal, two different methods are used to create an image to compare with our proposed image creation approach. The vibration signal is collected from a self-designed testbed containing multiple bearings of different fault conditions. Two other conventional CNN architectures are compared with our proposed model. Based on the results obtained, it can be concluded that the image generated with fault signatures not only accurately classifies multiple faults with CNN but can also be considered as a reliable and stable method for the diagnosis of fault bearings.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3510 ◽  
Author(s):  
Zhijian Wang ◽  
Junyuan Wang ◽  
Wenhua Du

Variational Mode Decomposition (VMD) can decompose signals into multiple intrinsic mode functions (IMFs). In recent years, VMD has been widely used in fault diagnosis. However, it requires a preset number of decomposition layers K and is sensitive to background noise. Therefore, in order to determine K adaptively, Permutation Entroy Optimization (PEO) is proposed in this paper. This algorithm can adaptively determine the optimal number of decomposition layers K according to the characteristics of the signal to be decomposed. At the same time, in order to solve the sensitivity of VMD to noise, this paper proposes a Modified VMD (MVMD) based on the idea of Noise Aided Data Analysis (NADA). The algorithm first adds the positive and negative white noise to the original signal, and then uses the VMD to decompose it. After repeated cycles, the noise in the original signal will be offset to each other. Then each layer of IMF is integrated with each layer, and the signal is reconstructed according to the results of the integrated mean. MVMD is used for the final decomposition of the reconstructed signal. The algorithm is used to deal with the simulation signals and measured signals of gearbox with multiple fault characteristics. Compared with the decomposition results of EEMD and VMD, it shows that the algorithm can not only improve the signal to noise ratio (SNR) of the signal effectively, but can also extract the multiple fault features of the gear box in the strong noise environment. The effectiveness of this method is verified.


Entropy ◽  
2019 ◽  
Vol 21 (7) ◽  
pp. 680 ◽  
Author(s):  
Zhang ◽  
Zhou

This study presents a comprehensive fault diagnosis method for rolling bearings. The method includes two parts: the fault detection and the fault classification. In the stage of fault detection, a threshold based on refined composite multiscale dispersion entropy (RCMDE) at a local maximum scale is defined to judge the health state of rolling bearings. If the bearing is in fault, a generalized multi-scale feature extraction method is developed to fully extract fault information by combining fast ensemble empirical mode decomposition (FEEMD) and RCMDE. Firstly, the fault vibration signals are decomposed into a set of intrinsic mode functions (IMFs) by FEEMD. Secondly, the RCMDE value of multiple IMFs is calculated to generate a candidate feature pool. Then, the maximum-relevance and minimum-redundancy (mRMR) approach is employed to select the sensitive features from the candidate feature pool to construct the final feature vectors, and the final feature vectors are fed into random forest (RF) classifier to identify different fault working conditions. Finally, experiments and comparative research are carried out to verify the performance of the proposed method. The results show that the proposed method can detect faults effectively. Meanwhile, it has a more robust and excellent ability to identify different fault types and severity compared with other conventional approaches.


2020 ◽  
Vol 10 (16) ◽  
pp. 5542 ◽  
Author(s):  
Rui Li ◽  
Chao Ran ◽  
Bin Zhang ◽  
Leng Han ◽  
Song Feng

Rolling bearings are fundamental elements that play a crucial role in the functioning of rotating machines; thus, fault diagnosis of rolling bearings is of great significance to reduce catastrophic failures and heavy economic loss. However, the vibration signals of rolling bearings are often nonlinear and nonstationary, resulting in difficulty for feature extraction and fault recognition. In this paper, a hybrid method for multiple fault diagnosis of rolling bearings is presented. The bearing vibration signals are decomposed with the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) to denoise and extract nonlinear entropy features. The nonlinear entropy features are further processed to select the more discriminative fault features and to reduce feature dimension. Then a multi-class intelligent recognition model based on ensemble support vector machine (ESVM) is constructed to diagnose different bearing fault modes as well as fault severities. The effectiveness of the proposed method is assessed via experimental case studies of rolling bearings under multiple operational conditions (i.e., speeds and loads). The results show that our method gives better diagnosis results as compared to some existing approaches.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 4047 ◽  
Author(s):  
Liwei Zhan ◽  
Fang Ma ◽  
Jingjing Zhang ◽  
Chengwei Li ◽  
Zhenghui Li ◽  
...  

In this paper, a novel method is proposed to enhance the accuracy of fault diagnosis for rolling bearings. First, an enhanced complementary empirical mode decomposition with adaptive noise (ECEEMDAN) method is proposed by determining two critical parameters, namely the amplitude of added white noise (AAWN) and the ensemble trails (ET). By introducing the concept of decomposition level, the optimal AAWN can be determined by judging the mutation of mutual information (MI) between adjacent intrinsic mode functions (IMFs). Furthermore, the ET is fixed at two to reduce the computational cost. This method can avoid disturbance of the spurious mode in the signal decomposition and increase computational speed. Enhanced CEEMDAN demonstrates a more significant improvement than that of the traditional CEEMDAN. Vibration signals can be decomposed into a set of IMFs using enhanced CEEMDAN. Some IMFs, which are named intrinsic information modes (IIMs), effectively reflect the vibration characteristic. The evaluated comprehensive factor (CF), which combines the shape, crest and impulse factors, as well as the kurtosis, skewness, and latitude factor, is developed to identify the IIM. CF can retain the advantage of a single factor and make up corresponding drawbacks. Experiment results, especially for the extraction of bearing fault under variable speed, illustrate the superiority of the proposed method for the fault diagnosis of rolling bearings over other methods.


Author(s):  
Jun Zhu ◽  
Chao Wang ◽  
Zhiyong Hu ◽  
Fanrang Kong ◽  
Xingchen Liu

The bearing fault diagnosis is of vital significance in maintaining the safety of rotation machine. Among various fault detection techniques, the diagnosis based on vibration signal is widely applied in monitoring the condition of rotation machine. Variational mode decomposition (VMD) is a novel signal analysis method, which can decompose a multi-component signal into a certain number of band-limited intrinsic mode functions (BLIMFs) nonrecursively. VMD could overcome some problems such as mode mixing, the inference of noise, the determination of wavelet base, which exist in empirical mode decomposition, ensemble empirical mode decomposition, wavelet transform, respectively. However, the empirical selection of the parameters for VMD would affect the result of the decomposition. This paper presents an adaptive VMD method with parameter optimization for detecting the localized faults of rolling bearing. Kurtosis, sensitive to transient impulsive components, is employed as optimization index to evaluate the performance of the VMD. Two parameters in the VMD, namely the number of decomposition modes and data-fidelity constraint, are optimized synchronously based on the kurtosis index through artificial fish swarm algorithm. Executing VMD with the acquired parameters, the optimal BLIMF is obtained. The spectrum analysis of the optimal BLIMF could identify the characteristic frequency caused by the localized crack effectually. The validity of the proposed method is proved by means of a cyclic transient impulse response signal and two experiments with practical vibration signals of rolling bearings. Compared to several existing methods, the proposed method demonstrates reinforced results.


Sign in / Sign up

Export Citation Format

Share Document