Nonlinear vibration response analysis of a double-row self-aligning ball bearing due to surface imperfections

Author(s):  
Vivek Parmar ◽  
VH Saran ◽  
SP Harsha

This work attempts to study the vibration response of a double-row self-aligning ball bearing due to surface and localized imperfections. For the contact deformation at the ball–race interactions, the Hertzian load–deflection relation is used for the evaluation of time-varying contact stiffness. The elastohydrodynamic theory is applied to find out the central film thickness. For both the inner and outer race waviness cases, the system response is observed as periodic (with vibrations of high amplitude) at [Formula: see text], i.e. multiples of Nb and its vicinity, but gradually turns to quasi-periodic as the value of waviness order reach some intermediate value. In the case of a localized defect, the double impulse phenomenon marks the entry and exit events of the rolling element in and out of the rectangular spall. Hence, this analysis can be used as a diagnostic tool with system dynamic characteristics for distributed and localized defect identification.

2018 ◽  
Vol 7 (2) ◽  
pp. 289
Author(s):  
Samir Shaikh ◽  
Sham Kulkarni

The theoretical model with 2 degree-of-freedom system is developed for predicting the vibration response and analyze frequency properties in an extended type defective ball bearing. In the mathematical formulation, the contact between the races and rolling element considered as non-linear springs. The contact forces produced during the collaboration of rolling elements are obtained by utilizing Hertzian contact deformation hypothesis. The second order nonlinear differential equation of motion is solved using a state space variable method with the help of MATLAB software and the vibration acceleration response of the defective ball bearing presented in the frequency spectrum. The effects of variation in speed and size of the defect on characteristic frequency of extended fault on the outer raceway of the ball bearing have been investigated. The theoretical results of the healthy (non defective) and defective bearing are compared with each other.


2019 ◽  
Vol 9 (02) ◽  
pp. 39-43
Author(s):  
Muhamad Riva’i ◽  
Nanda Pranandita

Measurement of the damage of elements in bearing can be by measuring the vibration generated in the form of a frequency signal when the pad is rotating. Measurement of vibration on the bearing by using vibration measuring instrument. Damage to the rolling bearing includes damage to the cage, outer ring, inner ring and balls. The rolling bearings used in this study are deep groove ball bearing type 6003 RS with internal diameter (d) = 17 mm, outer diameter (D) = 35 mm, bearing thickness (B) = 10, number of rolling elements (Nb) = 10 pieces, and the diameter of the rolling element (Bd) = 4.75 mm. In the rotation of the bearing (Fr) = 2003 rpm (33.38 Hz) we found the experimental results of bearings that have been damaged in the outer race at 138 Hz frequency, inner race damage at 196 Hz frequency, (ball) at a frequency of 88.8 Hz and cage damage at a frequency of 13.8 Hz.


2013 ◽  
Vol 198 ◽  
pp. 651-656 ◽  
Author(s):  
Marijonas Bogdevičius ◽  
Viktor Skrickij

The paper considers the dynamics of ball bearings with defects. A mathematical model of a ball bearing with defects is offered. The performed theoretical and experimental investigations of ball bearings with defects are described. Five cases of various defects are investigated, including the defective outer race, the defective inner race, the defective rolling element, the defective inner and outer races, the rolling element and a separator, the worn-out ball bearing.


1999 ◽  
Vol 122 (3) ◽  
pp. 609-615 ◽  
Author(s):  
N. Tandon ◽  
A. Choudhury

A theoretical model to predict the vibration response of rolling element bearing in a rotor bearing system to distributed defects under radial load has been developed. The rotor bearing system has been considered as a three degrees of freedom model. The distributed defects considered are, the waviness of outer and inner races, and off size rolling element. The model predicts discrete spectrum with specific frequency components for each order of waviness. For outer race waviness, the spectrum has components at outer race defect frequency and its harmonics. In the case of inner race waviness, the waviness orders equal to number of rolling elements and its multiples give rise to spectral components at inner race defect frequency and its multiples. Other orders of waviness generate sidebands at multiples of shaft frequency about these peaks. The model predicts the amplitudes of the spectral components due to outer race waviness to be much higher as compared to those due to inner race waviness. In the case of an off-size rolling element, the model predicts discrete spectra having significant components at multiples of cage frequency. [S0742-4787(00)00603-2]


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Xin Zhang ◽  
Changfeng Yan ◽  
Yaofeng Liu ◽  
Pengfei Yan ◽  
Yubo Wang ◽  
...  

Rolling element bearing is a very important part of mechanical equipment and widely used in rotating machinery. Rolling element bearings could appear localized defects during the working condition, which would cause the complex vibration response of bearings. Considering the shaft and bearing pedestal, a 4 degree-of-freedom (DOF) dynamic model of rolling bearing with compound localized fault is established based on time-varying displacement, and the vibration characteristics of rolling bearing with localized faults under different conditions are investigated. The established model is verified by the experimental vibration signals in time domain and frequency domain. The results show that the vibration response of compound fault is the result of the coupling action of a single fault of rolling element and outer race. The influences of compound fault on the vibration signals of the bearing were analyzed under three conditions. With the increasing of radial load, defect size, and rotation speed, the vibration amplitude of bearing would increase correspondently, which would accelerate the failure rate of bearing and reduce the service life of bearing. This model is helpful to analyze the vibration response of the rolling element bearing with single or compound fault.


The bearing is very important segment in any rotating machinery. It is continually running under changing speed and load conditions. Failure of bearing frequently results in extensive mechanical downtime that has monetary outcomes. Timely diagnosis of bearing breakdown is to avoid machines failure, as well as to decrease the maintenance cost of machine. To analyze failure of the bearing artificial defect were created on various elements of the bearing and using vibration signature for monitoring its condition analysis is carried.In this paper the effect of various surface defects on the vibration response of outer race and inner race of the ball bearing and Roller bearing is discussed. Vibration spectrum produced by bearing with defect on inner or outer race under different load conditions is taken and effect of defect size and load on the vibration response has been investigated. Results are presented in time and frequency domain. The results obtained by experimentations are compared with MATLAB results


2019 ◽  
Vol 10 (02) ◽  
pp. 41-46
Author(s):  
Muhamad Riva’i ◽  
Nanda Pranandita

Measurement of the damage of elements in bearing can be by measuring the vibration generated in the form of a frequency signal when the pad is rotating. Measurement of vibration on the bearing by using vibration measuring instrument. Damage to the rolling bearing includes damage to the cage, outer ring, inner ring and balls. The rolling bearings used in this study are deep groove ball bearing type 6003 RS with internal diameter (d) = 17 mm, outer diameter (D) = 35 mm, bearing thickness (B) = 10, number of rolling elements (Nb) = 10 pieces, and the diameter of the rolling element (Bd) = 4.75 mm. In the rotation of the bearing (Fr) = 2003 rpm (33.38 Hz) we found the experimental results of bearings that have been damaged in the outer race at 138 Hz frequency, inner race damage at 196 Hz frequency, (ball) at a frequency of 88.8 Hz and cage damage at a frequency of 13.8 Hz


Sign in / Sign up

Export Citation Format

Share Document