scholarly journals A theoretical model for predicting the vibration response of outer race defective ball bearing

2018 ◽  
Vol 7 (2) ◽  
pp. 289
Author(s):  
Samir Shaikh ◽  
Sham Kulkarni

The theoretical model with 2 degree-of-freedom system is developed for predicting the vibration response and analyze frequency properties in an extended type defective ball bearing. In the mathematical formulation, the contact between the races and rolling element considered as non-linear springs. The contact forces produced during the collaboration of rolling elements are obtained by utilizing Hertzian contact deformation hypothesis. The second order nonlinear differential equation of motion is solved using a state space variable method with the help of MATLAB software and the vibration acceleration response of the defective ball bearing presented in the frequency spectrum. The effects of variation in speed and size of the defect on characteristic frequency of extended fault on the outer raceway of the ball bearing have been investigated. The theoretical results of the healthy (non defective) and defective bearing are compared with each other.

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Behnam Ghalamchi ◽  
Jussi Sopanen ◽  
Aki Mikkola

Since spherical roller bearings can carry high load in both axial and radial direction, they are increasingly used in industrial machineries and it is becoming important to understand the dynamic behavior of SRBs, especially when they are affected by internal imperfections. This paper introduces a dynamic model for an SRB that includes an inner and outer race surface defect. The proposed model shows the behavior of the bearing as a function of defect location and size. The new dynamic model describes the contact forces between bearing rolling elements and race surfaces as nonlinear Hertzian contact deformations, taking radial clearance into account. Two defect cases were simulated: an elliptical surface on the inner and outer races. In elliptical surface concavity, it is assumed that roller-to-race-surface contact is continuous as each roller passes over the defect. Contact stiffness in the defect area varies as a function of the defect contact geometry. Compared to measurement data, the results obtained using the simulation are highly accurate.


2019 ◽  
Vol 9 (02) ◽  
pp. 39-43
Author(s):  
Muhamad Riva’i ◽  
Nanda Pranandita

Measurement of the damage of elements in bearing can be by measuring the vibration generated in the form of a frequency signal when the pad is rotating. Measurement of vibration on the bearing by using vibration measuring instrument. Damage to the rolling bearing includes damage to the cage, outer ring, inner ring and balls. The rolling bearings used in this study are deep groove ball bearing type 6003 RS with internal diameter (d) = 17 mm, outer diameter (D) = 35 mm, bearing thickness (B) = 10, number of rolling elements (Nb) = 10 pieces, and the diameter of the rolling element (Bd) = 4.75 mm. In the rotation of the bearing (Fr) = 2003 rpm (33.38 Hz) we found the experimental results of bearings that have been damaged in the outer race at 138 Hz frequency, inner race damage at 196 Hz frequency, (ball) at a frequency of 88.8 Hz and cage damage at a frequency of 13.8 Hz.


Author(s):  
Vivek Parmar ◽  
VH Saran ◽  
SP Harsha

This work attempts to study the vibration response of a double-row self-aligning ball bearing due to surface and localized imperfections. For the contact deformation at the ball–race interactions, the Hertzian load–deflection relation is used for the evaluation of time-varying contact stiffness. The elastohydrodynamic theory is applied to find out the central film thickness. For both the inner and outer race waviness cases, the system response is observed as periodic (with vibrations of high amplitude) at [Formula: see text], i.e. multiples of Nb and its vicinity, but gradually turns to quasi-periodic as the value of waviness order reach some intermediate value. In the case of a localized defect, the double impulse phenomenon marks the entry and exit events of the rolling element in and out of the rectangular spall. Hence, this analysis can be used as a diagnostic tool with system dynamic characteristics for distributed and localized defect identification.


1999 ◽  
Vol 122 (3) ◽  
pp. 609-615 ◽  
Author(s):  
N. Tandon ◽  
A. Choudhury

A theoretical model to predict the vibration response of rolling element bearing in a rotor bearing system to distributed defects under radial load has been developed. The rotor bearing system has been considered as a three degrees of freedom model. The distributed defects considered are, the waviness of outer and inner races, and off size rolling element. The model predicts discrete spectrum with specific frequency components for each order of waviness. For outer race waviness, the spectrum has components at outer race defect frequency and its harmonics. In the case of inner race waviness, the waviness orders equal to number of rolling elements and its multiples give rise to spectral components at inner race defect frequency and its multiples. Other orders of waviness generate sidebands at multiples of shaft frequency about these peaks. The model predicts the amplitudes of the spectral components due to outer race waviness to be much higher as compared to those due to inner race waviness. In the case of an off-size rolling element, the model predicts discrete spectra having significant components at multiples of cage frequency. [S0742-4787(00)00603-2]


Author(s):  
P. K. Kankar ◽  
Satish C. Sharma ◽  
S. P. Harsha

The paper investigates the non-linear dynamic response of an unbalanced rotor supported on ball bearings with outer race waviness. The excitation is due to unbalanced force and waviness on outer race. The sources of non-linearities are both the radial clearance as well as the Hertzian contact between races and rolling elements. The nonlinear responses due to unbalanced rotor supported on bearings are investigated. The combined effects like non-linear stiffness and non-linear damping for unbalanced rotor with bearing waviness have been considered and analyzed in detail for a rotor bearing system. In the mathematical formulation, the contacts between the rolling elements and the races are considered as an oscillating spring-mass-damper system. The appearance of regions of periodic, sub-harmonic and chaotic behavior is seen to be strongly dependent on the number of waves in the outer race. The results show the appearance of instability and chaos in the dynamic response as the number of waves in the outer race is changed. The study indicates that the interaction of ball passage frequency (ωbp) due to outer race waviness and rotational frequency (X) due to the unbalanced rotor force. Poincaré maps and frequency responses are used to elucidate and to illustrate the diversity of the system behavior.


2019 ◽  
Vol 10 (02) ◽  
pp. 41-46
Author(s):  
Muhamad Riva’i ◽  
Nanda Pranandita

Measurement of the damage of elements in bearing can be by measuring the vibration generated in the form of a frequency signal when the pad is rotating. Measurement of vibration on the bearing by using vibration measuring instrument. Damage to the rolling bearing includes damage to the cage, outer ring, inner ring and balls. The rolling bearings used in this study are deep groove ball bearing type 6003 RS with internal diameter (d) = 17 mm, outer diameter (D) = 35 mm, bearing thickness (B) = 10, number of rolling elements (Nb) = 10 pieces, and the diameter of the rolling element (Bd) = 4.75 mm. In the rotation of the bearing (Fr) = 2003 rpm (33.38 Hz) we found the experimental results of bearings that have been damaged in the outer race at 138 Hz frequency, inner race damage at 196 Hz frequency, (ball) at a frequency of 88.8 Hz and cage damage at a frequency of 13.8 Hz


2021 ◽  
Vol 69 (2) ◽  
pp. 89-101
Author(s):  
Pingping Hou ◽  
Liqin Wang ◽  
Zhijie Xie ◽  
Qiuyang Peng

In this study, an improved model for a ball bearing is established to investigate the vibration response characteristics owing to outer race waviness under an axial load and high speed. The mathematical ball bearing model involves the motions of the inner ring, outer ring, and rolling elements in the radial XY plane and axial z direction. The 2Nb + 5 nonlinear differential governing equations of the ball bearing are derived from Lagrange's equation. The influence of rotational speed and outer race waviness is considered. The outer race waviness is modeled as a superposition of sinusoidal function and affects both the contact deformation between the outer raceway and rolling elements and initial clearance. The MATLAB stiff solver ODE is utilized to solve the differential equations. The simulated results show that the axial vibration frequency occurred at l fc and the radial vibration frequencies appeared at l fc fc when the outer race waviness of the order (l) was the multiple of the number of rolling elements (k Nb) and that the principal vibration frequencies were observed at l fc fc in the radial x direction when the outer race waviness of the order (l) was one higher or one lower than the multiple of the number of rolling elements (k Nb 1). At last, the validity of the proposed ball bearing model was verified by the high-speed vibration measurement tests of ball bearings.


2002 ◽  
Vol 124 (3) ◽  
pp. 468-473 ◽  
Author(s):  
Har Prashad

The diagnosis and cause analysis of rolling-element bearing failure have been well studied and established in literature. Failure of bearings due to unforeseen causes were reported as: puncturing of bearings insulation; grease deterioration; grease pipe contacting the motor base frame; unshielded instrumentation cable; the bearing operating under the influence of magnetic flux, etc. These causes lead to the passage of electric current through the bearings of motors and alternators and deteriorate them in due course. But, bearing failure due to localized electrical current between track surfaces of races and rolling-elements has not been hitherto diagnosed and analyzed. This paper reports the cause of generation of localized current in presence of shaft voltage. Also, it brings out the developed theoretical model to determine the value of localized current density depending on dimensional parameters, shaft voltage, contact resistance, frequency of rotation of shaft and rolling-elements of a bearing. Furthermore, failure caused by flow of localized current has been experimentally investigated.


2014 ◽  
Vol 658 ◽  
pp. 305-310
Author(s):  
Alina Corina Dumitrascu ◽  
Gelu Ianus ◽  
Dumitru Olaru

Based on a theoretical model and an experimental methodology for defining the rolling resistance moments in a modified thrust ball bearing having only 3 balls, the authors experimentally investigated the influence of the Hertzian contact pressure on rolling resistance moments between a ball and a race. The experiments were realized with balls having diameters between 1.588 mm and 4.762 mm with maximum Hertzian pressure between 0.2GPa and 1GPa, operating for rotational speed between 60rpm to 210 rpm. The experiments evidenced that the measured values of the rolling resistance moments have higher values that the theoretical hysteresis and curvature rolling resistance moments for low contact pressure. By increasing of the contact pressure to 1GPa the experimental values for rolling resistance moments are in good agreement with the theoretical models.


Author(s):  
A. Liew ◽  
N. S. Feng ◽  
E. J. Hahn

Non-linearity effects in rolling element bearings may arise from the Hertzian contact force deformation relationship, the presence of clearance between the rolling elements and the bearing races, and the bearing to housing clearance. Assuming zero bearing to housing clearance and ignoring rolling element centrifugal load effects, it has been shown in earlier work that Rotor Bearing Systems (RBSs) with deep groove ball bearings can give rise to non-linear behavior such as chaotic motion and jump. This paper extends the bearing model to include rolling element centrifugal load, angular contacts and axial dynamics. The effect of more sophisticated bearing models is illustrated in both a rigidly supported rigid RBS and a flexibly supported flexible RBS, the latter being a model of a test rig designed to simulate an aircraft mounted accessory drive unit. Results are presented on the effect of bearing preload on the unbalance response up to a speed of 18,000 rpm.


Sign in / Sign up

Export Citation Format

Share Document