Development of a frequency-dependent constitutive model for hysteresis of shape memory alloys

Author(s):  
Saeid Shakiba ◽  
Aghil Yousefi-Koma ◽  
Moosa Ayati

In this study, a constitutive model based on Liang-Rogers’s relations is developed to characterize the effect of the excitation frequency in the hysteresis of shape memory alloys. Shape memory alloys are good candidates as smart actuators because of their high strain and power density, although the complex hysteresis behavior barricades their usage. Although constitutive models are one of the most potent methods to predict the shape memory alloys behavior, they cannot consider the effect of excitation frequency in active applications. In this paper, the Liang-Rogers model is modified to consider this effect using a linear relation between the excitation frequency and martensite transformation temperatures. A shape memory alloy-driven actuator as a morphing wing is employed to characterize the frequency effect on shape memory alloy hysteresis. Experimental results show that the hysteresis is widened when the excitation frequency increases. The modeling results show that the original model significantly fails to predict the correct behavior when the frequency increases, whereas the proposed model can adequately handle the frequency effect on the behavior of the shape memory alloy-driven actuator.

2019 ◽  
Vol 30 (8) ◽  
pp. 1163-1177
Author(s):  
Canjun Li ◽  
Zhen Zhou ◽  
Yazhi Zhu

Super-elastic shape memory alloys are widely used in structural engineering fields due to their encouraging super-elasticity and energy dissipation capability. Large-size shape memory alloy bars often present significant residual strains after unloading, which emphasizes the necessity of developing a residual strain effect–coupled constitutive model to predict well the performance of shape memory alloy–based structures. First, this article experimentally studies the hysteretic behavior of NiTi shape memory alloy bars under quasi-static loading conditions and investigates the effects of cyclic numbers and strain amplitudes on residual strain. Second, a concept of cumulative transformation strain is preliminarily introduced into a phenomenological Lagoudas model. A uniaxial constitutive model for shape memory alloy bars including the residual strain is proposed. By using OpenSees platform, numerical simulations of shape memory alloy bars are conducted—the results of which indicate that the proposed model can accurately capture the hysteretic behavior of shape memory alloys. The predicted residual strains show a good agreement to experimental results, which demonstrates the desirable efficiency of the proposed model.


Robotica ◽  
2021 ◽  
pp. 1-15
Author(s):  
Saeid Shakiba ◽  
Moosa Ayati ◽  
Aghil Yousefi-Koma

SUMMARY Prandtl–Ishlinskii (PI) model has an excellent compromise to characterize an asymmetric saturated hysteresis behavior of shape-memory-alloy (SMA)-driven systems, but it cannot consider thermomechanical relations between components of SMA-driven systems. On the other hand, constitutive models are composed of these relations, but their precision needs to be improved. In this paper, PI model is proposed to boost constitutive models in two cases. In the first case, PI model is used to characterize martensite volume fraction (MVF) called hybrid model. In the second case, the model is applied as a regulator in the output of a constitutive model called PI-based output (PIO) regulator. Due to simplicity and ability of Liang–Rogers (LR) model in transformation phases, it is considered as an MVF in the original constitutive model. The performance of both proposed models is compared with the original LR-based constitutive model. Unknown parameters of all three models are identified using genetic algorithm in MATLAB Toolbox. The performance of the three models is investigated at three different frequencies of \[\frac{{2\pi }}{8}\] , \[\frac{{2\pi }}{{15}}\] , and \[\frac{{2\pi }}{{30}}\] Hz because the excitation frequency changes the hysteresis behavior. Results show that the proposed hybrid model keeps the precision of the original constitutive model at different frequencies. In addition, the proposed PIO model shows the best performance to predict hysteresis behavior at different frequencies.


2012 ◽  
Vol 23 (10) ◽  
pp. 1143-1160 ◽  
Author(s):  
Walid Khalil ◽  
Alain Mikolajczak ◽  
Céline Bouby ◽  
Tarak Ben Zineb

In this article, we propose a finite element numerical tool adapted to a Fe-based shape memory alloy structural analysis, based on a developed constitutive model that describes the effect of phase transformation, plastic sliding, and their interactions on the thermomechanical behavior. This model was derived from an assumed expression of the Gibbs free energy taking into account nonlinear interaction quantities related to inter- and intragranular incompatibilities as well as mechanical and chemical quantities. Two scalar internal variables were considered to describe the phase transformation and plastic sliding effects. The hysteretic and specific behavior patterns of Fe-based shape memory alloy during reverse transformation were studied by assuming a dissipation expression. The proposed model effectively describes the complex thermomechanical loading paths. The numerical tool derived from the implicit resolution of the nonlinear partial derivative constitutive equations was implemented into the Abaqus® finite element code via the User MATerial (UMAT) subroutine. After tests to verify the model for homogeneous and heterogeneous thermomechanical loadings, an example of Fe-based shape memory alloy application was studied, which corresponds to a tightening system made up of fishplates for crane rails. The results we obtained were compared to experimental ones.


2019 ◽  
Vol 31 (1) ◽  
pp. 100-116 ◽  
Author(s):  
Bingfei Liu ◽  
Qingfei Wang ◽  
Kai Yin ◽  
Liwen Wang

A theoretical model for the crack monitoring of the shape memory alloy intelligent concrete is presented in this work. The mechanical properties of shape memory alloy materials are first given by the experimental test. The one-dimensional constitutive model of the shape memory alloys is reviewed by degenerating from a three-dimensional model, and the behaviors of the shape memory alloys under different working conditions are then discussed. By combining the electrical resistivity model and the one-dimensional shape memory alloy constitutive model, the crack monitoring model of the shape memory alloy intelligent concrete is given, and the relationships between the crack width of the concrete and the electrical resistance variation of the shape memory alloy materials for different crack monitoring processes of shape memory alloy intelligent concrete are finally presented. The numerical results of the present model are compared with the published experimental data to verify the correctness of the model.


2017 ◽  
Vol 28 (19) ◽  
pp. 2853-2871 ◽  
Author(s):  
Siavash Jafarzadeh ◽  
Mahmoud Kadkhodaei

In this article, a previously developed constitutive model for ferromagnetic shape memory alloys is phenomenologically enhanced using experimental observations. A modified phase diagram along with a method for calibration of the required model parameters is further presented. The model is implemented into a user material subroutine to equip commercial finite element software ABAQUS with the capability of simulating magneto-mechanical behaviors of ferromagnetic shape memory alloys. A combined convergence scheme is employed to solve the implicit equations. The proposed model together with the presented numerical solution is shown to be able to study shape memory effect and pseudoelasticity at different constant magnetic fields. The simulated magnetic loading/unloading cycles at different constant stresses are found to be well-fitted to the experimental findings. As a practical application of the ferromagnetic shape memory alloy coupled magneto-mechanical response, a spring actuator (a bias spring serially connected to one ferromagnetic shape memory alloy element) is investigated, and the numerical predictions are shown to be in a good agreement with available experimental results. As a novel case, geometrically graded NiMnGa elements are also introduced and are simulated with the use of this approach.


Author(s):  
Saeid Shakiba ◽  
Aghil Yousefi-Koma ◽  
Mehdi Jokar ◽  
Mohammad Reza Zakerzadeh ◽  
Hamid Basaeri

Unique features of shape memory alloys make them a proper actuation choice in various control systems. However, their nonlinear hysteresis behavior negatively affects wide utilization of such materials in structure actuation. In this study, the frequency effect on the hysteresis behavior of a shape memory alloy–actuated structure is experimentally investigated, and also two proposed versions of rate-dependent Prandtl-Ishlinskii (modified rate-dependent Prandtl-Ishlinskii and revised modified rate-dependent Prandtl-Ishlinskii) are presented, which are capable of characterizing this phenomenon. Experimental results show that increasing excitation frequency leads to bigger hysteresis loops. It is also proven that rate-dependency cannot be predicted by generalized Prandtl-Ishlinskii model. In addition, a comparison between the dead zone function-based rate-dependent Prandtl-Ishlinskii model as an only benchmark model and the proposed models have been done that proves the proposed models’ superiority. In addition, genetic algorithm is exploited to identify unknown parameters of all models. Trained models performance is also experimentally evaluated at different input frequencies. Comparison between simulation and experimental results indicates that the proposed models can reliably predict saturated, asymmetric, rate-dependent hysteresis behavior, and minor loops in shape memory alloy–embedded actuators.


Author(s):  
MR Karamooz-Ravari ◽  
B Shahriari

With the advent of shape memory alloys, several industrial applications were proposed due to their superior mechanical and biological properties. Since the fabrication and characterization of shape memory alloy devices is challenging and expensive, it is necessary to simulate their thermomechanical responses before fabrication. To do so, a powerful constitutive model capable of simulation of the important features of these materials is necessary. To be able to simulate a shape memory alloy device, it is vital to implement a suitable constitutive model in such a way to be used in finite element models. In this paper, an existing constitutive model based on microplane theory is numerically implemented and the effects of stress increment, different numerical integration formulas, and loading direction on the thermomechanical response of shape memory alloy is investigated through superelastic and shape memory proportional and nonproportional loadings. The obtained results show that the stress increment may have significant effect on the results if the forward Euler scheme is utilized. In addition, for the case of numerical integration over the surface of a unit hemisphere, 61 points integration formula without orthogonal symmetry provides the best results while 21 orthogonally symmetric one is the most inaccurate one. Also, the orthogonally symmetric numerical integration formulas predict the isotropic material response while those without orthogonal symmetry predict a little anisotropy.


2011 ◽  
Vol 216 ◽  
pp. 469-473
Author(s):  
Hai Tao Li ◽  
Xiang He Peng

A two-phase constitutive model for shape memory alloys (SMAs) is proposed based on the fact that SMAs is dynamically composed of austenite and martensite. The behavior of SMAs is regarded as the dynamic combination of the individual behavior of each phase. This model can describe the main characteristics of SMAs, such as pseudoelasticity and shape memory effect. The corresponding numerical algorithm was also developed to describe the main features of shape memory alloy Au-47.5at.%Cd.


Author(s):  
Xiangjun Jiang ◽  
Jin Huang ◽  
Yongkun Wang ◽  
Fengqun Pan ◽  
Baotong Li ◽  
...  

A phenomenological constitutive model is developed to describe the uniaxial transformation ratcheting behaviors of super–elastic shape memory alloy (SMA) by employing a cosine–type phase transformation equation with the initial martensite evolution coefficient that can capture the feature of the predictive residual martensite accumulation evolution and the nonlinear hysteresis loop on a finite element (FE) analysis framework. The effect of the applied loading level on transformation ratcheting are considered in the proposed model. The evolutions of transformation ratcheting and transformation stresses are constructed as the function of the accumulated residual martensite volume fraction. The FE implementation of the proposed model is carried out for the numerical analysis of transformation ratcheting of the SMA bar element. The integration algorithm and the expression of consistent tangent modulus are deduced in a new form for the forward and reverse transformation. The numerical results are compared with those of existing model and the experimental results to show the validity of the proposed model and its FE implementation in transformation ratcheting. Finally, a FE modeling is established for a repeated preload analysis of SMA bolted joint


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Y. M. Parulekar ◽  
G. R. Reddy

Recently, there has been increasing interest in using superelastic shape memory alloys for applications in seismic resistant-design. Shape memory alloys (SMAs) have a unique property by which they can recover their original shape after experiencing large strains up to 8% either by heating (shape memory effect) or removing stress (pseudoelastic effect). Many simplified shape memory alloy models are suggested in the past literature for capturing the pseudoelastic response of SMAs in passive vibration control of structures. Most of these models do not consider the cyclic effects of SMA's and resulting residual martensite deformation. Therefore, a suitable constitutive model of shape memory alloy damper which represents the nonlinear hysterical dynamic system appropriately is essential. In this paper a multilinear hysteretic model incorporating residual martensite strain effect of pseudoelastic shape memory alloy damper is developed and experimentally validated using SMA wire, based damper device. A sensitivity analysis is done using the proposed model along with three other simplified SMA models. The models are implemented on a steel frame representing an SDOF system and the comparison of seismic response of structure with all the models is made in the numerical study.


Sign in / Sign up

Export Citation Format

Share Document