Cross-section optimization of thin-walled open-section composite column for maximizing its ultimate strength

Author(s):  
Prashant K Choudhary ◽  
Prashanta K Mahato ◽  
Prasun Jana

This paper focuses on the optimization of thin-walled open cross-section laminated composite column subjected to uniaxial compressive load. The cross-section of the column is parameterized in such a way that it can represent a variety of shapes including most of the regular cross-sections such as H, C, T, and I sections. The objective is to obtain the best possible shape of the cross-section, by keeping a constant total material volume, which can maximize the ultimate load carrying capacity of the column. The ultimate strength of the column is determined by considering both buckling instability and material failure. For material failure, Tsai-Wu composite failure criterion is considered. As analytical solutions for these parameterized column models are not tractable, the ultimate loads of the composite columns are computed through finite-element analysis in ANSYS. And, the optimization is carried out by coupling these finite-element results with a genetic algorithm based optimization scheme developed in MATLAB. The optimal result obtained through this study is compared with an equivalent base model of cruciform cross-section. Results are reported for various lengths and boundary conditions of the columns. The comparison shows that a substantial increase of the ultimate load, as high as 610%, can be achieved through this optimization study. Thus, the present paper highlights some important characteristics of open cross-sections that can be useful in the design of thin-walled laminated column structures.

2016 ◽  
Vol 12 (3) ◽  
pp. 558-576 ◽  
Author(s):  
Aníbal J.J. Valido ◽  
João Barradas Cardoso

Purpose The purpose of this paper is to present a design sensitivity analysis continuum formulation for the cross-section properties of thin-walled laminated composite beams. These properties are expressed as integrals based on the cross-section geometry, on the warping functions for torsion, on shear bending and shear warping, and on the individual stiffness of the laminates constituting the cross-section. Design/methodology/approach In order to determine its properties, the cross-section geometry is modeled by quadratic isoparametric finite elements. For design sensitivity calculations, the cross-section is modeled throughout design elements to which the element sensitivity equations correspond. Geometrically, the design elements may coincide with the laminates that constitute the cross-section. Findings The developed formulation is based on the concept of adjoint system, which suffers a specific adjoint warping for each of the properties depending on warping. The lamina orientation and the laminate thickness are selected as design variables. Originality/value The developed formulation can be applied in a unified way to open, closed or hybrid cross-sections.


Author(s):  
Muhammad Zubair Muis Alie ◽  
Ganding Sitepu ◽  
Juswan Sade ◽  
Wahyuddin Mustafa ◽  
Andi Mursid Nugraha ◽  
...  

This paper discusses the influence of asymmetrically damaged ships on the ultimate hull girder strength. When such damages take place at the asymmetric location of cross sections, not only translation but also inclination of instantaneous neutral axis takes place during the process of the progressive collapse. To investigate this effect, the Finite Element Analysis (FEA) is employed and the damage is assumed in the middle hold. The collision damage is modeled by removing the plate and stiffener elements at the damage region assuming the complete loss of the capacity at the damage part. For the validation results obtained by Finite Element Analysis of the asymmetrically damaged ship hull girder, the simplified method is adopted. The Finite Element method of ultimate strength analysis of a damaged hull girder can be a practical tool for the ship hull girder after damages, which has become one of the functional requirements in IMO Goal Based Ship Construction Standard.


2013 ◽  
Vol 721 ◽  
pp. 545-550
Author(s):  
Sai Wu ◽  
Jun Hai Zhao ◽  
Er Gang Xiong

Based on the finite element analysis software ANSYS/LS-DYNA, this paper numerically analyzed the dynamic performance of MTCCCs with different cross sections under blast load, followed by the study and comparison on the differences of the detonation wave propagation and failure modes between the columns in circular cross section and square cross section. The results show: The blast resistant performance of the circular component is more superior than the square component for its better aerodynamic shape that can greatly reduce the impact of the detonation wave on the column; The main difference of the failure modes between the circular and square cross-sectional components under blast load lies in the different failure mode of the outer steel tube. The simulation results in this paper can provide some references for the blast resisting design of MTCCCs.


Author(s):  
Ranil Banneyake ◽  
Ayman Eltaher ◽  
Paul Jukes

Ovalization of the cross-section of bends under in-plane bending (a.k.a. Brazier effect) is a known phenomenon caused by the longitudinal stress acting on the cross-section as the pipe bends. Besides its tendency to induce stresses in the bend above what is predicted using simple beam theory, excessive cross-section ovalization is particularly critical to subsea pipes, as it can lead to collapse of the pipe under external pressure. Also, being in a plastic regime may cause the bend material to ratchet and undergo excessive strains under cyclic operational loads, especially under high-pressure high-temperature (HPHT) conditions. Ovalization normally results in local increase of stresses and could lead to failure of the bend before the bend globally reaches its limiting capacity. The offshore industry standards and design codes address the impact of initial ovality in straight pipes, but their applicability to bends is not clear. Therefore, this paper presents an investigation into the increased tendency of thin-walled bends to ovalize, and the effect of bend cross-section ovalization on their stiffness and yielding and collapse limit states, with emphasis on offshore applications. Due to the lack of analytical solutions for the bend response taking into account cross-section ovalization, finite element analysis (FEA) is used in this study. Predictions of the bend models are compared with those of straight pipe models and predictions of models of the bend made of beam elements (with pipe section) are compared with those of models made of brick /shell elements. The increased tendency of thin-walled bends to ovalize compared to straight pipes is investigated (e.g. 100 times in the linear range), and the impact and significance of ovalization in bends are assessed (e.g., stress increase of the order of 35% has been observed in some example situations). Also discussed in the paper is the selection of proper element specifications in order to accurately capture the ovalization response while keeping the computational cost manageable. Recommendations as to how to account for ovalization effects are presented. This paper helps to gain a better understanding of the response of subsea thin-walled bends under in-plane bending and their comparatively high tendency to ovalize compared to straight pipe, and emphasizes the significance of local effects such as cross-section ovalization, the overlooking of which may result in a significant underestimation of involved stresses and strains.


Author(s):  
Aditya Dhobale

Abstract: Construction of Body in White (BiW) revolves around plenty of challenges. Ranging from BiW fixtures to curbing weight of Body in White sheet metal design. This paper discusses about all the design aspects in BiW manufacturing in automobile and confronting challenges that occurs. At present, lots of existing theories are being applied and efforts to improve the same are being made. This paper provides a path on how components can be developed and make necessary improvements. CAE (Computer Aided Engineering) tools have been used for FEA (Finite Element Analysis) and also an example of stress analysis of automotive chassis is given. An outcome depending on behaviour of loads acting on frame is drawn. The importance of hollow tubes, tubes of different- cross sections to counter weight and ease the designing of BiW frame have been proposed. This paper also provides insight on safety parameters with current construction of tubular frame chassis. Other solutions such as hybrid tubes, foam padding and plastic trim have been pointed out in this paper. Keywords: CAE, FEA, manufacturing, loads, tubes, cycle-time, cross-section.


Author(s):  
C. Veena ◽  
S Saravanan ◽  
Robin Davis P. ◽  
Nandakumar Gopalan

Failure loads of sheet pile having various profiles such as U, Z and Omega/Hat profiles under compression was carried out by using equations of strength of materials and compared the failure load under various modes such as Euler’s buckling, torsional buckling and failure load due to yielding. Compared the strength of various profiles under flexure by using finite element analysis. Sheet pile can be analyzed as a unit cell for the simplified finite element analysis. For selecting the unit cell sheet pile with omega/Hat section was analyzed for profile containing one to eight numbers and checked the convergence of bending stress and maximum lateral deflection. Interlocks were analyzed for three different conditions such as plane interlock, interlock filled with bitumen and welded interlock. Location of interlock and neutral axis of the wall will affect the stability of the structure. Sheet piles with various cross sections were analyzed and studied the shear stress and bending stress along the cross section. From the structural performance of various cross sections omega/hat section can be considered as the most efficient cross section for the cold formed steel sheet pile because of its more load carrying capacity under compression and high torsion resistance and less bending stress. Results from the finite element analysis for the selection of unit cell shows that the stress and deflection value was converge at the sheet pile having 6 numbers of profiles. Keywords: sheet piles, building, resistance.


2018 ◽  
Vol 177 ◽  
pp. 01030
Author(s):  
Muhammad Zubair Muis Alie ◽  
Juswan ◽  
Wahyuddin ◽  
Taufiqur Rachman

The objective of the present research is to study the ultimate strength of ship’s hull considering cross section and beam finite element under longitudinal bending. The single hull bulk carrier and double hull oil tanker are taken to be analysed. The one-frame space of ship is considered in the calculation. The cross section of ship’s hull is divided into element composed plate and stiffened plate. The cross section is assumed to be remained plane and the simply supported is imposed to both side of the cross section. The longitudinal bending moment is applied to the cross section for hogging and sagging condition. The Smith’s method is adopted and implemented into the in-house program of the cross section and beam finite element to calculate the ultimate strength of ship’s hull. The result of the ultimate strength for hogging and sagging condition obtained by considering the cross section and beam finite element is compared with one another.


2021 ◽  
pp. 187-200
Author(s):  
Pankaj Kumar Jha ◽  
Rachayya Arakerimath

When a vehicle tips over onto its roof or side due to internal or external force on a vehicle is called Rollover impact. Rollover is a very critical impact compared to another mode of vehicle impacts. B-pillar and its cross-section design are very critical in the rollover impacts by reducing the cabin intrusion of vehicle. B-pillar absorbs most of the energy at the time of rollover and reduces the fatality rate of the passenger. In this work, a B-pillar finite element (FE) model is modeled to analyze as per FMVSS216a standard protocol to check the critical performance. Two generic cross-sections of the B-pillar are considered for preliminary assessment. This B-pillar designs FE model (cut model) are modeled and analyzed for FMVSS216a using LS-DYNA explicit code. The FMVS216a lab test is a quasi-static test and LS-DYNA is the well-accepted FEA tool to simulate the quasi-static test. LS-DYNA software is widely accepted as a multi-purpose finite element analysis (FEA), capable of solving complex problems in the field of Automobile, Aerospace, etc. So LS-DYNA is considered for the study of the B-Pillar simulations. Both the B-pillar designs are accessed and compared with respect to energy absorption, crush resistance characteristics with respect to the full vehicle rollover test. With the detailed performance study of both cross-section designs under rollover impact, the best performing B-pillar design in terms of high energy absorption and high vehicle resistance is selected for furtheroptimization study to meet the Roof crush standard requirements.


Sign in / Sign up

Export Citation Format

Share Document