scholarly journals Modeling and Comparative Analysis of Different Generic Cross Section B-Pillar Design in Roof Crush Impact

2021 ◽  
pp. 187-200
Author(s):  
Pankaj Kumar Jha ◽  
Rachayya Arakerimath

When a vehicle tips over onto its roof or side due to internal or external force on a vehicle is called Rollover impact. Rollover is a very critical impact compared to another mode of vehicle impacts. B-pillar and its cross-section design are very critical in the rollover impacts by reducing the cabin intrusion of vehicle. B-pillar absorbs most of the energy at the time of rollover and reduces the fatality rate of the passenger. In this work, a B-pillar finite element (FE) model is modeled to analyze as per FMVSS216a standard protocol to check the critical performance. Two generic cross-sections of the B-pillar are considered for preliminary assessment. This B-pillar designs FE model (cut model) are modeled and analyzed for FMVSS216a using LS-DYNA explicit code. The FMVS216a lab test is a quasi-static test and LS-DYNA is the well-accepted FEA tool to simulate the quasi-static test. LS-DYNA software is widely accepted as a multi-purpose finite element analysis (FEA), capable of solving complex problems in the field of Automobile, Aerospace, etc. So LS-DYNA is considered for the study of the B-Pillar simulations. Both the B-pillar designs are accessed and compared with respect to energy absorption, crush resistance characteristics with respect to the full vehicle rollover test. With the detailed performance study of both cross-section designs under rollover impact, the best performing B-pillar design in terms of high energy absorption and high vehicle resistance is selected for furtheroptimization study to meet the Roof crush standard requirements.

2013 ◽  
Vol 721 ◽  
pp. 545-550
Author(s):  
Sai Wu ◽  
Jun Hai Zhao ◽  
Er Gang Xiong

Based on the finite element analysis software ANSYS/LS-DYNA, this paper numerically analyzed the dynamic performance of MTCCCs with different cross sections under blast load, followed by the study and comparison on the differences of the detonation wave propagation and failure modes between the columns in circular cross section and square cross section. The results show: The blast resistant performance of the circular component is more superior than the square component for its better aerodynamic shape that can greatly reduce the impact of the detonation wave on the column; The main difference of the failure modes between the circular and square cross-sectional components under blast load lies in the different failure mode of the outer steel tube. The simulation results in this paper can provide some references for the blast resisting design of MTCCCs.


Author(s):  
Aditya Dhobale

Abstract: Construction of Body in White (BiW) revolves around plenty of challenges. Ranging from BiW fixtures to curbing weight of Body in White sheet metal design. This paper discusses about all the design aspects in BiW manufacturing in automobile and confronting challenges that occurs. At present, lots of existing theories are being applied and efforts to improve the same are being made. This paper provides a path on how components can be developed and make necessary improvements. CAE (Computer Aided Engineering) tools have been used for FEA (Finite Element Analysis) and also an example of stress analysis of automotive chassis is given. An outcome depending on behaviour of loads acting on frame is drawn. The importance of hollow tubes, tubes of different- cross sections to counter weight and ease the designing of BiW frame have been proposed. This paper also provides insight on safety parameters with current construction of tubular frame chassis. Other solutions such as hybrid tubes, foam padding and plastic trim have been pointed out in this paper. Keywords: CAE, FEA, manufacturing, loads, tubes, cycle-time, cross-section.


Author(s):  
C. Veena ◽  
S Saravanan ◽  
Robin Davis P. ◽  
Nandakumar Gopalan

Failure loads of sheet pile having various profiles such as U, Z and Omega/Hat profiles under compression was carried out by using equations of strength of materials and compared the failure load under various modes such as Euler’s buckling, torsional buckling and failure load due to yielding. Compared the strength of various profiles under flexure by using finite element analysis. Sheet pile can be analyzed as a unit cell for the simplified finite element analysis. For selecting the unit cell sheet pile with omega/Hat section was analyzed for profile containing one to eight numbers and checked the convergence of bending stress and maximum lateral deflection. Interlocks were analyzed for three different conditions such as plane interlock, interlock filled with bitumen and welded interlock. Location of interlock and neutral axis of the wall will affect the stability of the structure. Sheet piles with various cross sections were analyzed and studied the shear stress and bending stress along the cross section. From the structural performance of various cross sections omega/hat section can be considered as the most efficient cross section for the cold formed steel sheet pile because of its more load carrying capacity under compression and high torsion resistance and less bending stress. Results from the finite element analysis for the selection of unit cell shows that the stress and deflection value was converge at the sheet pile having 6 numbers of profiles. Keywords: sheet piles, building, resistance.


Author(s):  
Shinde Rushikesh ◽  
Mali Kiran ◽  
M. Kathiresan ◽  
Kulkarni Dhananjay

In the present research, an experimental and numerical study on the crush response of square tube is presented. The explicit Finite Element Analysis (FEA) in LS-DYNA software is carried out to simulate crash behaviour under the quasi-static test conditions. Compression load is applied quasi-statically in an experimental study on the square tube specimens using Universal Testing Machine (UTM). In quasi-static test the bottom platen speed used is 1 mm/min. From experimental testing symmetric collapse mode is observed in all deformed specimens. The development of the symmetric collapse mode in a Finite Element (FE) model is also observed. Thus fold formation and crush response predicted by FE analysis are observed to be in very good correlation with the results obtained from experimental testing. Furthermore, the effect of the thickness of tube on crashworthiness parameters is investigated. From the FE analysis, it is found that the thickness of the square tube influences significantly the crashworthiness parameters.


Author(s):  
Prashant K Choudhary ◽  
Prashanta K Mahato ◽  
Prasun Jana

This paper focuses on the optimization of thin-walled open cross-section laminated composite column subjected to uniaxial compressive load. The cross-section of the column is parameterized in such a way that it can represent a variety of shapes including most of the regular cross-sections such as H, C, T, and I sections. The objective is to obtain the best possible shape of the cross-section, by keeping a constant total material volume, which can maximize the ultimate load carrying capacity of the column. The ultimate strength of the column is determined by considering both buckling instability and material failure. For material failure, Tsai-Wu composite failure criterion is considered. As analytical solutions for these parameterized column models are not tractable, the ultimate loads of the composite columns are computed through finite-element analysis in ANSYS. And, the optimization is carried out by coupling these finite-element results with a genetic algorithm based optimization scheme developed in MATLAB. The optimal result obtained through this study is compared with an equivalent base model of cruciform cross-section. Results are reported for various lengths and boundary conditions of the columns. The comparison shows that a substantial increase of the ultimate load, as high as 610%, can be achieved through this optimization study. Thus, the present paper highlights some important characteristics of open cross-sections that can be useful in the design of thin-walled laminated column structures.


Author(s):  
Jat Yuen Richard Liew ◽  
Binglin Lai ◽  
Shan Li

Concrete encased steel composite columns have been widely used in high-rise buildings and top-down constructions owning to excellent load-carrying capacity and fire resistance. However, double symmetric composite section is rarely achieved due to the off-center eccentricity of steel kingpost, which is a common problem in top-down constructions. EN1994-1-1 (EC4) simplified method does not provide any explicit provisions for this kind of irregular composite columns, and many designers address this issue by reducing it into a symmetrical cross-section for ease of simple calculation. This paper presents a general method based on nonlinear finite element modelling software ABAQUS to analyze the ultimate strength behavior of concrete-encased composite columns with asymmetrically placed steel section. The accuracy of the FE model is verified against existing test results.   Parametric study is performed to further investigate the influence of steel section eccentricity on ultimate strength of stub columns under different loading conditions. A simplified method based on modification of EC4 design approach is developed to construct the moment-axial force interaction diagram. Accuracy of the proposed method is assessed by comparing the analytically predicted results with the numerical results. It is found that the proposed method can be adopted as a useful tool to predict the cross-section resistance of non-symmetrical concrete-encased steel composite columns. 


2019 ◽  
Vol 304 ◽  
pp. 01008
Author(s):  
Vasilis Votsios ◽  
Esteban Martino-Gonzalez ◽  
Jorge Lopez-Puente

An open rotor blade failure and release event can result in a high energy impact on an aircraft fuselage that can reduce the strength of the structure and challenge the safe continuation of the flight and landing. This work highlights the development of a numerical approach and methodology in order to improve the assessment of the damage predictions of a composite propeller blade impact against the fuselage of an aircraft to be able to estimate a minimum thickness of shielding for the full protection of the airframe. A number of dynamic simulations were carried out, from rigid up to deformable and frangible projectiles at different angles of incidence, varying the material and the thicknesses using Abaqus/Explicit. The finite element (FE) models for blade and target were calibrated and validated separately allowing to capture the right behavior and failure modes. Impact tests of partial blade fragments against stiffened composite panels were correlated with simulations and the obtained results show a good agreement regarding deformations and delaminated area. Finally, a full blade FE model was generated and used for the fuselage impact numerical analysis. This was done within the frame of the Open Rotor project funded by Clean Sky European research programme.


2012 ◽  
Vol 249-250 ◽  
pp. 954-957
Author(s):  
Yan Jie Liu ◽  
Lin Ding ◽  
Qing Fen Li ◽  
Dan Wang

In the present work, the structure optimum design and simulation analysis of aluminum alloy automobile energy-absorbing components was carried out by using Finite Element (FE) method. The numerical simulations were carried out using the software LS-DYNA. Automobile energy-absorbing components usually was made a mental thin walled tube. In the paper, the tube was adopted aluminum alloy material. The FE model of the tube was validated by comparing the theoretical results and FE model results. The good correlation of results obtained show that the numerical analyses are reliable. Attention was focused upon finding an optimum cross- section shape of the tube in order to improve the crashworthiness. Several types of cross- section were studied and compared. Results show that the crashworthiness of the tube improved obviously when square cross section with the grooves was adopted.


Author(s):  
Neeraj Kavan Chakshu ◽  
Sunil K. Sinha

In this paper, the natural frequencies of pre-twisted cantilever blades of various angles of twist having different airfoil cross sections in the NACA 6 series have been determined. The main objectives of this paper are to replicate the results previously published for the similar types of blades but with the assumption of a uniform rectangular cross-section and to compare it with the results obtained for blades with more refined airfoil cross-sections. Cantilevered type clamped-free boundary conditions have been used in this paper for all blades. The comparison of the natural frequencies among different airfoils of the same NACA series has also been described in the paper in order to find out if any parameter of the airfoil such as camber, maximum thickness etc have any significant role in changing the frequencies of the beam. Commonly used commercial codes for finite element analysis have been used to determine these results.


Sign in / Sign up

Export Citation Format

Share Document